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Abstract

India’s third longest river, the Narmada, is studied here for the potential effects on native fish populations of river
fragmentation due to various barriers including dams and a waterfall. The species we studied include a cyprinid fish,
Catla catla, and a mastacembelid, Mastacembelus armatus, both of which are found in the Narmada. Our goal was to
use DNA sequence information from the D-loop region of the mitochondrial DNA to explore how this fragmentation
could impact the genetic structure of these fish populations. Our results clearly show that these barriers can contribute
to the fragmentation of the genetic structure of these fish communities, Furthermore, these barriers enhance the
effects of natural isolation by distance and the asymmetry of dispersal flows. This may be a slow process, but it
can create significant isolation and result in genetic disparity. In particular, populations furthest upstream having low
migration rates could be even more subject to genetic impoverishment. This study serves as a first report of its kind for
a river system on the Indian subcontinent. The results of this study also emphasize the need for appropriate attention
towards the creation of fish passages across the dams and weirs that could help in maintaining biodiversity.
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Introduction
India is endowed with diverse aquatic habitats due in
part to a unique geological history, highly diverse physi-
ography, a monsoon climate and high biotic diversity.
The aquatic habitats include an extensive network of
rivers and streams made up of medium and minor river
systems (Rao 1975). The majority of these are perennial
rivers with large seasonal variation in their flows. In
India, over the past 60 years, the landscape of many
rivers and streams has also been changed artificially. In
response to the growing need of water for agriculture,
industrialization and domestic use, many dams and reser-
voirs are constructed (Khedkar et al. 2014a). Water flow is
now highly regulated and is often stored in reservoirs
that impound nearly all medium and large rivers. Dams
provide benefits in terms of flexibility to use water
when it is needed for irrigation, generation of electricity,
and other purposes, but have ecological costs as well.
The fragmentation of rivers due to dams or barriers

may adversely affect fish populations by diminishing
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natural habitats required for all life stages and interfering
with migration between populations. This in turn may
lead to reduced population size, loss of genetic diversity,
inbreeding and possible species extinctions. Dams may
diminish natural habitats in rivers (Dynesius and Nilsson
1994) and can act as barriers that interfere with migration
between populations, even in linked river segments. These
barriers may also inhibit recolonization by neighbouring
populations when local extinctions occur. River segments
altered by dams can also lead to environmental disparities
in terms of the temperature regimes, nutrient levels,
substrate sizes, organic matter transport, the availability
of lotic and lentic habitats, and the overall flow regimes
(Ward and Stanford 1983). As a result, aquatic communi-
ties may experience altered seasonal movements, loss of
genetic diversity, reduced population sizes and inbreeding
(Ellstrand and Elam 1993; Lynch et al. 1995; Antunes
Antunes et al. 2006). These alterations can lead directly to
population extinctions (Fagan 2002).
Because the effects of such artificial alterations may

have disproportionately greater impacts on the ability of
migratory species to complete their entire life cycle, a
number of studies have been directed toward recognizing
the effects of river fragmentation due to dams on migratory
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fish populations (Dunham et al. 1997; Neraas and Spruell
2001; Morita and Yamamoto 2002). In addition, under-
standing the consequences of fragmentation may also be
important for non-migratory species, such as cyprinids
or mastacembelids, that have low clearing capacities to
overcome the obstacle. Specifically it has been shown
that although the entire fish community can be affected
by weirs (Miranda et al. 2005; Poulet 2007), cyprinid
species often make up a major portion of such river
communities (Winfield and Townsend 1991).
Moreover, many cyprinid species are known to have to

cover considerable distances for reproduction and feeding
(McKeown 1984; Northcote 1984). One can hypothe-
sise that such species would be sensitive to obstacles
(Bainbridge 1958; Ovidio and Philippart 2002) and would
be at great risk of population decline and loss of local
genetic diversity (Knaepkens et al. 2004). However, rela-
tively few studies have explored the impacts of river
fragmentation due to dams and weirs on cyprinid popu-
lations. Of the studies done, many have been limited to
small-scale observations such as the effects of single
obstacles or have been assessed on individual-scale pro-
cesses such as survival and ⁄ or migration only (Lucas and
Frear 1997; Ovidio and Philippart 2002).
In this study we used a broad scale approach to

analyze the impact of fragmentation of a river due to a
combination of factors including dams and natural bar-
riers on populations of a cyprinid fish, Catla catla, and
a mastacembelid fish, Mastacembelus armatus.
C. catla was selected as a model since it is a cyprinid,

and although not considered to be migratory, is known
to be able to cover distances of approximately 15-20 km
against water current to spawn. C. catla is a ubiquitous
species, and based on its size (commonly from 5–30 cm),
surface dwelling habitat and its swimming ability, it can
also be considered to be representative of many other
cyprinids inhabiting Indian rivers (Jhingran 1968). Another
species, M. armatus, was also selected for this study since it
is an eel like species with a bottom dwelling habit (Rainboth
1996; Vidthayanon 2002), is very common in Indian rivers
and relatively easy to sample. M. armatus is not subject to
manipulation as a source of material for hatchery based
seed production and stocking, factors known to interfere
with natural processes (Froese and Binohlan 2000).
We used DNA sequence information from the D-loop

region of the mitochondrial DNA to identify markers to
differentiate populations (Wilson and Cann 1985; Bremer
et al. 1996; Nyakaana et al. 2002; Sato et al. 2004; Khedkar
et al. 2013) and to explore how both artificial and natural
fragmentation of river habitats could impact the genetic
structure of cyprinid and mastacembelid populations in
the Narmada river in India. Our specific objectives were
to evaluate the extent to which fragmentation could (i)
prompt population differentiation at the genetic level, (ii)
to identify the gross effects of multiple obstacles on the
population’s genetic structure in the upstream–down-
stream riverine regions; and (iii) to assess the effects of
dams and a natural water fall on dispersion.

Materials and methods
Study area
India’s third longest river, known as the Narmada, is
1332 km long and covers a drainage basin totaling
approximately 98,796 km2. This study considers only
the main stretch of the Narmada river and excludes its
tributaries. Most of the study sites selected were domi-
nated by cyprinid and mastacembelid fish. The Narmada
is fragmented from upstream to downstream by several
dams including the Bargi hydroelectric dam (69 m),
the Indira Sagar hydroelectric dam (92 m) and Sardar
Sarovar hydroelectric dam (136.5 m). In addition a
series of six major natural waterfalls in the Bhedaghat
area (~30 m height) occur along this part of the river
(Table 1, Figure 1). Both the natural and artificial barriers
impact the water flow and can potentially limit both
upstream and downstream dispersion of the fish.

Sampling
Fish were collected from six sampling stations using
various nets and gears during April, 2011 - February, 2013
(Figure 1 and Additional file 1: Table S1). Sites were con-
sidered for their potential to accommodate cyprinids and
mastacembelids (presence of lentic and lotic zones and
vegetation shelters) and for their accessibility. Each
sampling site was approximately 1500 m long, and all
habitats were sampled downstream to upstream until at
least 10-12 cyprinid and mastacembelid fish had been
caught. We note that C. catla fish were not found at
Dindori station, and likewise M. armatus were not found
at Bharuch station. From each specimen a finclip, approxi-
mately 1 cm2, was obtained and stored in absolute ethanol
until laboratory analysis as describe below.

DNA extraction, PCR and DNA sequencing
Genomic DNA was extracted using the genomic DNA
isolation kit (Promega wizard) from a total 43 C. catla
and 60M. armatus fish. Primers for amplification of the
mitchondrial D-loop region of M. armatus were designed
using the programs PRIMER 3 (Rozen and Skaletsky
2000) and Oligo Calc (Kibbe 2007) by Simgene using a
reference sequence obtained from Genbank (EU380216.1).
The primers designed for M. armatus were: MADF
(5′-TTATATGCATTCATTCAGGTACA-3′) and MADR
(5′-TAGGGCCCATTTTAACATCT-3′). For C. catla the
Carp-Pro and Carp-Phe primers were as described by
Thai et al. (2004). Amplifications were carried out using
an initial denaturation step at 95°C for 2 min followed by
35 cycles of 94°C for 30 s, 57°C for 1 min and 72°C for



Table 1 Details of the sampling stations on the Narmada river

Sampling
station

Geographic position Distance from
origin of the
river (Km)

Distance
from upstream

sampling
station (Km)

Distance from
downstream
sampling

station (Km)

Presence of
barrier up-stream

and type

Presence of
barrier down-stream

and type
Latitude Longitude Elevation (m)

Dindori 22°56’32”N 81°04’34”E 2203 62 – 272 – Bargi Hydroelectric
dam (69 m high).

Jabalpur 23°04’55”N 79°54’12”E 1319 334 272 310 Bargi Hydroelectric
dam (69 m high).

Series of 6 Natural
Waterfalls

(30 m high).

Hoshangabad 22°45’52”N 77°44’18”E 996 644 310 274 Series of 6 Natural
Waterfalls

(30 m high).

Indira Sagar
Hydroelectric dam

(92 m high).

Mortakka 22°09’03”N 75°29’54”E 545 918 274 280 Indira Sagar
Hydroelectric dam

(92 m high).

Sardar Sarovar
Hydroelectric dam
(136.5 m high).

Rajpipla 21°51’48”N 73°30’17”E 113 1198 280 105 Sardar Sarovar
Hydroelectric dam
(136.5 m high).

–

Bharuch 21°42’05”N 73°00’45”E 28 1303 105 – – –
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1 min along with a final extension at 72°C for 5 min. The
amplified fragments were processed for cycle sequencing
using the BigDye® Terminator v.3.1 Cycle Sequencing
Kit (Applied Biosystems, Inc.) followed by cleanup and
bi-directional sequencing using an ABI 3130 Genetic
analyzer (Applied Biosystems, Inc.).

Data analysis
Sequence alignments and topographic analysis
Sequences were aligned using Codon code aligner v4.0.3
(CodonCode Corporation, Dedham, MA, USA). Within
population diversity was estimated by computing haplotype
diversity (H) and nucleotide diversity (π) indices using
DnaSP v5.10 (Librado and Rozas 2009) and Arlequin
v3.5.1.2 (Excoffier and Lischer 2010). Hierarchical relation-
ships among the populations were analyzed using AMOVA
and genetic variance was partitioned using Fst. The phylo-
genetic analysis included finding the best substitution
Figure 1 Map of the Narmada river basin showing location of samplin
model in Modeltest 2.1.1 (Darriba et al. 2012) using Akaike
Information Criterion (AIC) and Baysian Information Cri-
terion (BIC). The haplotype network was computed using
Network v4.6.1.1 (Bandelt et al. 1999) where the haplotype
pairwise differences were used to determine the number of
mutational steps between haplotypes. A statistical test ini-
tially developed to analyze selective neutrality of mutations
was implemented to test demographic expansion in recent
years (de Jong et al. 2011; Ramos-Onsins and Rozas 2002).
As shown by de Jong et al. (2011), these tests are designed
to distinguish between neutrally evolving sequences in
mutation drift equilibrium and sequences evolving under
non-neutral processes including directional and balancing
selection and demographic expansion or population con-
traction. These tests were performed in Arlequin v3.1 using
1000 simulations under a selective model of neutrality.
For Mantel test, isolation by distance model was analyzed
following the method of Jensen et al. (2005).
g stations and dams.
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Results
Diversity indices
Mitochondrial DNA control region (D loop) sequences of
800 bp were obtained and aligned for the individuals from
the Narmada river from to two fish species, M. armatus
and C. catla (NCBI Accession numbers KF468051 to
KF468110). The sequences of M. armatus (n = 60) showed
39 polymorphic sites, accounting for almost 4% of total
number of sites examined. Among the polymorphic sites,
7 were singleton variable sites and 2 were parsimony
informative sites. Similarly among the individuals repre-
senting the C. catla population (n = 42), there were 15
variable sites (~2%) including 6 singletons and one par-
simony informative site.

Genetic diversity
Eight haplotypes were found in the M. armatus popula-
tions and thirteen were found in the C. catla populations.
The distribution and frequency of the haplotypes in each
population is shown in Table 2. Haplotypes 2 and 3 are
widely distributed in all populations of M. armatus. Five
unique haplotypes, represented by only single individuals
from Jabalpur, Mortakka and Rajpipla populations and
Table 2 Distribution and frequency of different D-loop haplot

Haplotype Dindori Jabalpur Hosang

Mastacembelus armatus

Hap1 4 (0.40) 0 0

Hap2 4 (0.40) 3 (0.214) 12 (0.92

Hap3 2 (0.20) 4 (0.286) 1 (0.076

Hap4 0 5 (0.357) 0

Hap5 0 1 (0.071) 0

Hap6 0 1 (0.071) 0

Hap7 0 0 0

Hap8 0 0 0

Catla catla

Hap1 – 0 0

Hap2 – 0 1 (0.125

Hap3 – 0 0

Hap4 – 0 3 (0.375

Hap5 – 0 0

Hap6 – 4 (0.667) 0

Hap7 – 1 (0.167) 1 (0.125

Hap8 – 0 1 (0.125

Hap9 – 0 1 (0.125

Hap10 – 0 1 (0.125

Hap11 – 1 (0.167) 0

Hap12 – 0 0

Hap13 – 0 0

Italicized Values in bracket shows the relative haplotype frequency.
three others were found in more than one population
(Figure 2). In the C. catla populations, haplotype 2 is
widely distributed whereas six unique haplotypes repre-
sented by only one population and seven others were
admixtures of more than one population. Three were
found to occur only in the Hoshangabad population
(Table 2; Figure 3). Neighbor-joining (NJ) trees showing
haplotype relationships were constructed based on the
Kimura 2-parameter model, and bootstrap values based
on 1,000 replicates shown (Figure 4A and B).
For M. armatus, the haplotype diversity and nucleotide

diversity values for the Jabalpur population were highest
(0.791 and 0.0240 respectively) whereas these values were
lowest (0.154 and 0.0003 respectively) in the Hoshangabad
population (Table 3). In C. catla, for the population from
Hoshangabad the haplotype diversity was also highest
(0.8929), but for this species the nucleotide diversity
was highest (0.2404) in the population from Mortakka
(Table 3).

Fst analysis
Pairwise comparisons of the genetic variation contained
in subpopulations relative to the total populations (Fst)
ypes of M. armatus and C. catla in different populations

abad Mortakka Rajpipla Bharuch

1 (0.076) 0 –

3) 8 (0.615) 6 (0.6) –

) 3 (0.231) 3 (0.3) –

0 0 –

0 0 –

0 0 –

1 (0.076) 0 –

0 1 (0.1) –

0 0 1 (0.10)

) 2 (0.25) 2 (0.20) 4 (0.40)

1 (0.125) 0 1 (0.10)

) 0 0 1 (0.10)

2 (0.25) 0 2 (0.20)

0 1 (0.10) 1 (0.10)

) 0 0 0

) 0 0 0

) 0 0 0

) 0 0 0

0 0 0

3 (0.375) 6 (0.60) 0

0 1 (0.10) 0



Figure 2 Median joining network map of haplotypes of M. armatus.
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of M. armatus were significant when the Jabalpur popu-
lation was compared with all of the others sampled here.
In addition, the comparison of the Dindori and Hos-
hangbad populations was also significant (Table 4). For
the C. catla populations, these values are significant only
for the comparisons of the Rajpipla and Bharuch popula-
tions and Jabalpur and Rajpipla populations (Table 5).
For M. armatus, the low pairwise Fst value were noted

(-0.0410) between Mortakka and Rajpipla may indicate
that these populations undergo genetic exchange events.
Among the C. catla populations, the low Fst values for
the Mortakka and Bharuch comparison (-0.00143) may
also suggest high levels of genetic exchange (Tables 4
and 5). Also, based on the AMOVA analysis, the major-
ity of the variation was found to be within populations
for both species (Table 6).
Figure 3 Median joining network map of haplotypes of C. catla.
To further analyze the potential for gene flow among
populations at different locations, we conducted an ana-
lysis in ARLEQUIN to obtain M values (Tables 7 and 8).
A value greater than two here indicates gene flow between
populations (Mallet 2001; Hebert et al. 2004). More than
half of our M values are greater than two, and for each of
the species, one of the M values is infinite.
Non-significant correlations for isolation by distance

were noticed in M. armatus populations (Mantel Test;
Z = 472.20, r = -0.0322, one sided P = 0.868 from 10,000
randomizations). RMA regression analysis also revealed
a negative isolation-by-distance relationship in case of
M. armatus (y = 0.2607x −2.837, r2 = 0.104) (Figure 5A).
For the C. catla populations there was a positive correl-
ation for isolation by distance (Mantel test; Z = 466.05,



Figure 4 Haplotype based NJ tree (A) M. armatus; (B) C. catla.
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r = 0.408, one sided P = 0.1312 from 10000 randomizations)
(Figure 5B).
There was significant support for the model of sudden

expansion of population size as well as spatial expansion
for the M. armatus population at Jabalpur (SSD = 0.7924,
p = 0.000 and SSD = 0.129, p = 0.0400 respectively). In
C. catla there is no significant support for either sudden
expansion or spatial expansion in any of the populations.
The values for Harpending’s raggedness index were non-
significant in all populations belonging to both species
(Table 9).
Table 3 D-loop sequence divergence values for M. armatus an

Fish
populations

Parameters

Dindori Jabalpur

Mastacembelus
armatus

No. of Samples (n) 10 14

No. of Polymorphic
sites (PS)

3 39

No. of Haplotypes (k) 3 5

Haplotype diversity (H) 0.711 ± 0.0860 0.791 ± 0.0673

Nucleotide diversity (π) 0.0015 ± 0.0011 0.0240 ± 0.0127

Catla catla No. of Samples (n) – 6

No. of Polymorphic
sites (PS)

– 6

No. of Haplotypes (k) – 3

Haplotype diversity (H) – 0.6000 ± 0.2152

Nucleotide diversity (π) – 0.17333 ± 0.124
Discussion
Concerns over habitat alterations and the subsequent
effects on biodiversity have received much scientific at-
tention during last few decades. Particularly for aquatic
diversity, conservationists are concerned that dams may
fragment and diminish natural habitats in rivers (Dynesius
and Nilsson 1994; Khedkar et al. 2014a) and create envir-
onmental disparities (Ward and Stanford 1983) that can
result in the loss of genetic diversity, reduced population
sizes and inbreeding (Ellstrand and Elam 1993; Lynch
et al. 1995). Ultimately, this may lead to population
d C. catla for populations from the Narmada river

Sampling stations

Hoshangabad Mortakka Rajpipla Bharuch

13 13 10 -

2 4 3 -

2 4 3 -

0.154 ± 0.1261 0.603 ± 0.1306 0.600 ± 0.1305 -

0.0003 ± 0.0004 0.0014 ± 0.0010 0.0015 ± 0.0011 -

8 8 10 10

7 8 6 10

6 4 4 6

0.8929 ± 0.1113 0.8214 ± 0.1007 0.6444 ± 0.1518 0.8444 ± 0.1029

1 0.1404 ± 0.0994 0.2404 ± 0.1551 0.1481 ± 0.1007 0.2044 ± 0.13120



Table 4 Population pairwise Fst comparisons for M. armatus (below the diagonal)

Dindori Jabalpur Hoshangabad Mortakka Rajpipla

Dindori – 0.00901* 0.02703* 0.45946 0.22523

Jabalpur 0.33467 – 0.00000* 0.00000* 0.03604*

Hoshangabad 0.15246 0.38583 – 0.32432 0.08108

Mortakka 0.01433 0.35912 0.04264 – 0.62162

Rajpipla 0.09018 0.31342 0.17758 −0.04100 –

*significant p values (<0.05).
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extinctions (Fagan 2002). Evaluation of Indian rivers for
the possible effects of fragmentation of river habitats
has not been adequately addressed, and in part this
study is first effort of its kind to evaluate the possible
effects of fragmentation of the Narmada river of India
using genetic approaches. Prior to this study, no records
of genetic studies for the Narmada river fish have been
found (Khedkar et al. 2014b).
The results of our study indicate several things. First,

using the data from mtDNA control region (D loop), over-
all levels of genetic variation of M. armatus are moderate
as compared to other teleostean fishes (Panarari-Antunes
et al. 2012; Librado and Rozas 2009; Aboim et al. 2005;
Stefanni and Thorley 2003; Salzburger et al. 2003; Lee et al.
1995; Fajen and Breden 1992). In terms of populations, the
M. armatus population from Jabalpur is naturally isolated
due to a waterfall fall on downstream side and a dam on
the upstream side. This population had high levels of
nucleotide diversity (0.0240), with up to 39 nucleotide
substitutions in some cases. This suggests that this
population is evolving independently and may become
further genetically differentiated. Similar observations
were made for populations of P. squamosissimus species
from the Parniba and Tocantinus river basins in China
(Panarari-Antunes et al. 2012).
In contrast, genetic differentiation among the C. catla

populations in the Narmada river basin appears to be
weaker as overall levels of genetic diversity were only
moderate to high. Most of the dams constructed across
the river basin are almost 30 years old, and the Bedaghat
fall is a natural barrier that is much older. The MtDNA
data described here uphold the common assumption
that analyzed populations of two native fish species
existed in this river before the construction of the dams.
Table 5 Population pairwise Fst comparisons for C. catla (belo

Jabalpur Hoshangabad

Jabalpur – 0.05405

Hoshangabad 0.18719 –

Mortakka 0.07238 0.01690

Rajpipla 0.17569 0.17440

Bharuch 0.18310 0.02768

*significant p values (<0.05).
From samples across the entire river, we found eight
haplotypes among 60 individuals of M. armatus vs. thir-
teen haplotypes among 42 individuals of C. catla. The
range of haplotype diversity values (H = 0.154 to 0.791
and 0.6000 to 0.8929, respectively for these two species)
and nucleotide diversity values (π = 0.0003 to 0.0240 and
0.1404 to 0.2044 respectively) (Table 3) were similar to
values seen in studies by Chen et al. (2006) on Kessle
fishes (H = 0.9992, π = 0.0082), Anthunes et al. (2012) on
P. squamonsissmus (H = 0.690, π = 0.0236).
Genetic data presented here suggest the possibility

that M. armatus populations, which are invasive to the
Narmada basin, originated from Jabalpur. This region
was naturally isolated from the rest of downstream
regions by the Bedaghat falls a few million years ago,
and this would naturally limit genetic exchange for this
population on the upstream side. The Jabalpur population
has relatively moderate genetic and haplotype diversity,
and this may also suggest a recent population expansion
after a founder event (Shaw et al. 1992; Carvalho et al.
1996). Comparisons of populations at localities serving
as drainages, however, could also provide additional reso-
lution for assessing the levels of genetic differentiation of
M. armatus populations.
The data revealed different levels of genetic differenti-

ation among the different sampling locations across the
basin of the Narmada, Haplotypes 2 and 3 may be treated
as ancient haplotypes because they are distributed among
all populations, whereas the few private haplotypes may
be more recently evolved (Figure 2). The genetic diversity
within C. catla populations documented here strongly
suggests that these fishes were likely derived from differ-
ent sources, possibly through human translocations, since
a mixed haplotype distribution was observed (Figure 3).
w the diagonal)

Mortakka Rajpipla Bharuch

0.18018 0.04505* 0.06306

0.38739 0.07207 0.29730

– 0.38739 0.34234

0.01864 – 0.00901*

−0.00143 0.25298 –



Table 6 Analysis of molecular variance (AMOVA) among and within populations

Source of variation Among populations
of M. armatus

Within M. armatus
populations

Total Fst Among populations
of C. catla

Within C. catla
populations

Total Fst

d.f. 4 55 59 0.3833* 4 37 41 0.114**

Sum of squares 76.321 148.212 224.533 11.295 50.300 61.595

Variance component 1.372Va 2.694Vb 4.066 0.175Va 1.359Vb 1.359

Percentage of
variation

33.74 66.26 – 11.45 88.55 –

Va-Variation among groups; Vb-Variation among populations within groups.
*significant p values (<0.05), **significant p values (<0.01).
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No significant genetic divergences were revealed in C.
catla. This may be explained by high rates of gene flow
between populations of this species within this system.
C. catla is also widely used for aquaculture in India

because of its simple culture needs and defined seed
production technologies (Jhingran 1968). Many hatcheries
are located in the Narmada basin, particularly at the
Bharuch region, and artificial seed products may be
reentering the river channel further impacting genetic
diversity. Also from the median joining networks, a
higher degree of haplotype sharing between localities
was seen for M. armatus as compared to the C. catla
populations (Figures 2 and 3). Therefore, the patterns
of genetic diversity seen within C. catla may also reflect
both inbreeding and genetic drift type events (Nei et al.
1975; Wishard et al. 1984).
For M. armatus, the pairwise Fst values indicate some

significant amounts of genetic exchange between the
Mortakka and Rajpipla populations in spite of the artificial
barrier created by the Sardar Sarowar dam. This suggests
that these locations may be connected through a sub
tributary network that allows migration. On the other
hand, the significantly lower amounts of genetic exchange
between the Jabalpur and Dindori populations supports
the idea that the presence of the Barghi dam between
them promotes fragmentation. Also overall, the pairwise
Fst values for the Jabalpur population of M. armatus
compared to the other populations also indicates signifi-
cant isolation and supports the role of various barriers in
promoting population isolation (Table 4). In the case of
C. catla, the Fst pairwise comparisons suggest that between
some populations, such as the Bharuch and Rajpipla popu-
lations, significant amounts of genetic exchange can occur.
Here, there is no barrier separating these locations.
Table 7 Matrix of M values for M. armatus

Dindori Jabalpur

Dindori –

Jabalpur 0.99402 –

Hoshangabad 2.77964 0.79590

Mortakka 34.40182 0.89230

Rajpipla 5.04464 1.09529
The potential for isolation is also considered in the
analysis of M values. Here, values of M below 2 imply
isolation in the population structure (Mallet 2001). The
pairwise comparisons of M values for the M. armatus
population from Jabalpur with Dindori, Hoshangabad,
Mortakka and Rajpipla are all less than this critical
value, and this supports the role of dams in promoting
genetic fragmentation and population structuring (Table 7).
The populations of C. catla do not show such structuring,
except for the pairwise comparison of M values between
the Bharuch and Rajpipla population (M < 2). This result is
consistent with the results based on pairwise Fst values as
described in the previous section.
The results of demographic analysis by mismatch dis-

tribution show evidence of population expansion. This
inference is supported, except perhaps for the Jabalpur
population of M. armatus (Table 9). We can assume that
a recent population expansion might have been affected
by genetic drift due to a bottleneck or a founder effect in
case of M. armatus. The demographic and spatial expan-
sion values for M. armatus are significant for Jabalpur
population only (Table 9).

Isolation by distance
Our sampling was restricted to the main channel of the
Narmada River, and the sites are lined up in accordance
with the stepping stone model of Kimura (1953). According
to this model (Kimura and Weiss 1964), in the idealized
case the genetic distance between samples increases simply
as geographical distance increases. This model also predicts
that in the one-dimensional case, the genetic correlation
should fall off exponentially with distance. In the case of M.
armatus, our observations are not in accordance with this
predicted pattern because here adjacent populations are
Hoshangabad Mortakka Rajpipla

–

11.22727 –

2.31561 infinite –



Table 8 Matrix of M values for C. catla

Jabalpur Hoshangabad Mortakka Rajpipla Bharuch

Jabalpur –

Hoshangabad 2.17115 –

Mortakka 6.40838 29.09091 –

Rajpipla 2.34597 2.36696 26.32727 –

Bharuch 2.23077 17.56350 infinite 1.47643 –
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significantly differentiated. This is consistent with the no-
tion that other factors, such as the barriers separating these
populations, are promoting fragmentation. In contrast, the
relationships of the C. catla population follow the model
pattern in general and do not appear to be so fragmented.

Upstream-downstream structure
The variation in genetic diversity along the upstream-
downstream gradient is another parameter potentially
influenced by the presence of dams. We observed that
haplotype and nucleotide diversities are not lined up in a
manner consistent with a simple upstream-downstream
gradient in populations of both fish species. However,
haplotype diversity may be sensitive to sampling bias in
that only about 10 individuals per population collected
at each sampling site. Additional sampling may reveal
the presence of undetected haplotypes.
A number of factors may explain the genetic diversity

values seen for the M. armatus populations. First, the
upper part of the Narmada river studied here is charac-
terized by a natural waterfall and a narrow channel, and
it is known that fish population sizes are often correlated to
the amount of available habitat (Frankham 1996; Hanfling
et al. 2002). Also, M. armatus may be subject to a range-
edge effect (Arnaud-Haond et al. 2006) since it was more
difficult to catch enough specimens in the sites furthest
upstream. No individuals were caught at the last locality
(Bharuch). Specifically for M. armatus, the nature of the
dispersion between sampling points, due to the river flow
Figure 5 Scatter plot of genetic vs. geographic variation with RMA re
and the obstacles, also suggests that the downstream sites
are not receiving new haplotypes from upstream localities.
In the case of C. catla, this same dispersion process may

maintain a high level of genetic diversity downstream,
while genetic drift is less influential in the upstream sam-
pling sites (Lacy 1987). Combining these observations, it
can be hypothesized that the M. armatus populations
within the Narmada river are organized as a single meta-
population composed of local populations exchanging
individuals by migration processes (Levins 1970; Hanski
and Gilpin 1991). Therefore in this case, the applicability
of the stepping-stone model can be rejected.
Dams and or waterfalls, which are designed to prevent

upstream movements, seem here in some cases to be suffi-
cient obstacles to induce detectable genetic consequences.
In other studies of small species such as bullhead, it has
been shown that obstacles only about 20 cm high can
prevent upstream movement. Individuals of species such as
Cottus gobio (Utzinger et al. 1998) and barbel (Barbus bar-
bus) individuals are stopped or slowed in their upstream
dispersion by a barrier 40 cm high weir (Lucas and Frear
1997). This study confirms that in some cases both dams
and water falls can contribute to the asymmetry of disper-
sion and a decrease in genetic diversity of fish populations.

Data set quality and potential bias
The sampling scheme
Our sampling strategy was to survey as many sites as
possible between obstacles that may impact the river
gression (A) M. armatus; (B) C. catla.



Table 9 Analysis of populations to deduce demographic and spatial expansion events

Statistics Dindori Jabalpur Hoshangabad Mortakka Rajpipla Bharuch

M. armatus Demographic expansion

SSD* 0.05702 0.79242 0.03195 0.10070 0.08515 –

p- values 0.08000 0.00000 0.11000 0.10000 0.21000 –

Raggedness index 0.06765 0.37640 0.76331 0.36736 0.31111 –

p- values 0.77000 0.95000 0.66000 0.10000 0.24000 –

Spatial expansion

SSD* 0.00738 0.12927 0.01297 0.07936 0.05586 –

p- values 0.61000 0.04000 0.20000 0.14000 0.21000 –

C. catla Demographic expansion

SSD* – 0.14614 0.01264 0.08586 0.19467 0.08154

p-values – 0.10000 0.70000 0.04000 0.06000 0.07000

Raggedness index – 0.27556 0.08291 0.24362 0.62519 0.19605

p- values – 0.33000 0.73000 0.12000 0.05000 0.08000

Spatial expansion

SSD* – 0.05272 0.01264 0.06637 0.13729 0.07079

p- values – 0.50000 0.67000 0.34000 0.09000 0.27000

(*SSD-sum of squared deviations).
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habitat structure. The main objective of this study was
to assess the extent to which genetic differentiation
of populations can be related to fragmentation. The
Narmada river system was chosen because there has
been extensive fragmentation due to the presence of
waterfalls and dams.
In artificially fragmented systems, the number of ob-

stacles is strongly correlated with water way distances
(Meldgaard et al. 2003). Dams are generally positioned
such that the distance between two consecutive obsta-
cles is about 250 km on average. This holds true for the
Narmada system, except that there is also a natural
waterfall within 60 kms of the Barghi dam. Due to this
spatial configuration, here the effects of waterway
distance and the number of obstacles were studied
independently.
Lastly, only sampling points of the main Narmada

River were considered here. Tributaries are known to have
influences on communities inhabiting the main stream
of drainage basins, and could also be involved in the
demographic and genetic structuring of the Narmada
populations (Hitt and Angermeier 2006; Khedkar et al.
2014a). However, for some species, Carlsson et al. (1999)
suggested that tributaries may represent ecologically
differentiated and locally adapted populations that only
rarely disperse in to the main stream, and vice versa.
Thus, consideration of only the main Narmada river
may be an efficient way to study the genetic structure
of these fish populations, although it would be useful to
investigate in future studies. the role potentially played
by the tributaries.
Conclusions
The results reported herein for M. armatus and C. catla
populations from the Narmada river clearly show evi-
dence, in some cases, for fragmentation effects by dams
and a water fall, and that these barriers contribute to the
genetic isolation and differentiation of fish populations.
The prevention of movements, either completely from
downstream to upstream, or partially from upstream to
downstream, by dams or other barriers, enhance the nat-
ural effects of isolation by distance and the asymmetry of
the dispersal flows. Consequently, populations, especially
those furthest upstream, would be expected to have very
low immigration rates and be more subject to genetic
impoverishment. This study can also provide methodo-
logical guidance for future studies of such ecological
situations. Sampling a long river segment such as the
Narmada with multiple obstacles is certainly a more effi-
cient way to assess the impact on fish dispersal.
Finally, our study does suffer from some biases. Some

sample sizes were low, and in some cases it was not pos-
sible directly sample upstream and downstream of each
barrier. Additional studies in the future may address
these biases by including samples of tributaries and
other potential sources of input into these populations.

Additional file

Additional file 1: Table S1. Details of fishing nets used for fish sampling.
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