SPRINGER LINK

Log in

≡ Menu

Q Search

🗀 Cart

Home SN Applied Sciences Article

Electrochemical behavior of hydrothermally synthesized porous groundnuts-like samarium oxide thin films

Short Communication Published: 25 March 2020

Volume 2, article number 756, (2020) Cite this article

Download PDF \pm

SN Applied Sciences

Aims and scope

Submit manuscript

S. B. Ubale, T. T. Ghogare, V. C. Lokhande, T. Ji & C. D. Lokhande

 1272 Accesses **\frac{12}{12}** 12 Citations Explore all metrics →

Abstract

One pot hydrothermal method is used for synthesis of groundnuts-like samarium oxide (Sm_2O_3) thin film on stainless steel substrate. The Sm_2O_3 film is characterized by X-ray diffraction, water contact angle, UV-visible spectrophotometer, photoluminescence, and field emission scanning electron microscopy techniques. The hydrothermal method allows the formation of cubic Sm_2O_3 film with porous groundnuts-like morphology. The Sm_2O_3 film is hydrophilic with the optical band gap of 3.70 eV. Electrochemical capacitive behavior of Sm_2O_3 film is studied using cyclic voltammetry, galvanostatic charge—discharge measurement and electrochemical impedance spectroscopy. The Sm_2O_3 film