

Materials Today Chemistry

Volume 20, June 2021, 100473

Enhanced specific energy of silver-doped MnO₂/graphene oxide electrodes as facile fabrication symmetric supercapacitor device

V.]. Mane^a, S.B. Kale^{a b}, S.B. Ubale^a, V.C. Lokhande^c, C.D. Lokhande^a 🙎 🖂

Show more \checkmark

😪 Share 🍠 Cite

https://doi.org/10.1016/j.mtchem.2021.100473 7 Get rights and content 7

Abstract

The present work is about the preparation of silver (Ag)-doped <u>manganese oxide</u> (MnO₂)/graphene oxide (GO) composite <u>thin films</u> are deposited by a facile and binder-free successive ionic layer adsorption and reaction (SILAR) method for the first time. The Brunauer-Emmett-Teller (BET) study revealed the <u>nanosheets</u> of MnO₂–Ag3/GO exhibit high specific surface area of $192 \text{ m}^2 \text{ g}^{-1}$. The tailored flower-like morphology and interconnected <u>nanosheets</u> of MnO₂–Ag3/GO electrodes achieved high electrochemical performance. The maximum specific capacitance (Cs) of 877 Fg^{-1} at the scan rate of 5 mV s^{-1} is obtained for MnO₂–Ag3/GO electrode tested in 1 M <u>sodium</u> sulfate (Na₂SO₄) electrolyte with capacity retention of 94.57% after 5000 cycling stability. The MnO₂–Ag3/GO composite-based flexible solid state <u>symmetric supercapacitor</u> (FSS-SSC) device delivered Cs as 164 Fg^{-1} with specific energy of 57 Wh kg^{-1} at specific power of 1.6 kW kg^{-1} and capacitive retention of 94% after 10,000 cycles.

Graphical abstract

Figure showing the specific energy versus specific power and flexible solid state <u>symmetric supercapacitor</u> device of configuration MnO₂-Ag3/GO//PVA-Na₂SO₄//MnO₂-Ag3/GO electrodes.