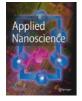
SPRINGER LINK

Log in

≡ Menu

Q Search


☐ Cart

Home **Applied Nanoscience**

Chemical synthesis of nano-grained ytterbium sulfide thin films for supercapacitor application

Original Article Published: 30 June 2020

Volume 10, pages 5085-5097, (2020) Cite this article

Applied Nanoscience

Aims and scope

Submit manuscript

S. B. Ubale, R. N. Bulakhe, V. J. Mane, D. B. Malavekar, Insik In & C. D. Lokhande

 \bigcirc 326 Accesses \bigcirc 14 Citations Explore all metrics \rightarrow

Abstract

Nano-grained ytterbium sulfide (Yb_2S_3) thin film is deposited by an inexpensive chemical bath deposition (CBD) method with excellent supercapacitive performance. The formation of Yb₂S₃ thin film is confirmed from XRD, FT-Raman, and XPS studies. The nano-grains like surface morphology of Yb₂S₃ thin film is observed using scanning electron microscopy and transmission electron microscopy techniques. The Yb₂S₃ film shows hydrophilic nature with a contact angle value of 61.2°. The electrochemical supercapacitive properties of Yb_2S_3 thin film are studied using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) techniques. The Yb₂S₃ thin film exhibits a specific capacitance of 184.6 F g^{-1} in 1 M KOH electrolyte at a 5 mV s⁻¹ scan rate. The symmetric solid-state supercapacitor device of configuration Yb₂S₃/KOH-PVA/Yb₂S₃ shows a specific capacitance of 15 F g⁻¹ and