Journal of Chemical Health Risks

www.jchr.org

JCHR (2024) 14(1), 145-151 | ISSN:2251-6727

Treatment of Textile Processing Effluent Using Bacterial Isolate and Activated Charcoal

Gajanan Shinde^{a b}, Ajaykumar Jadhav^{*a}

a Department of Microbiology, Government Institute of Science, Aurangabad (MS) India. bYashwantrao Chavan College of Science, Vidyanagar Karad Dist. Satara (MS) INDIA.

(Received: 27)	October 2023	Revised: 22 November	Accepted: 26 December)
KEYWORDS Effluent, BOD, COD, bioremediation, B. <i>licheniformis</i> , seed germination	quantity of was analysis was pe Demand (BOD effluent is a hi <i>licheniformis</i> w a reduction in F activated charce toxicity assess increased in cc compound whi biological and p	tewater. Effluent Sample of textile processir rformed as per the standard protocol of APH), Chemical Oxygen Demand (COD) and a ghly toxic and hazardous effect to the ecos as screened for various hydrolytic enzymes BOD by 50% and COD by 53%. The bacteria bal, resulted in 97% and 98% reduction in BC nent by seed germination was performed a mparison with untreated effluent. Textile ch makes this effluent very toxic and haz	their processes and generate an almost equal ag industry was collected and physicochemical IA 2017. The high value of Biological Oxygen adverse effect on wheat seeds, this highlights ystem. Bacterial isolate identified as <i>Bacillus</i> and explored for effluent treatment, it showed al treatment followed by physical treatment by DD and COD respectively. After treatment, the and 90% germination of the wheat seed was wastewater has very high amount of organic tradous to environment. The combination of reduction in terms of BOD, COD and toxicity iate for such type of effluent.

1. Introduction

The textile industry is one of the rapidly emerging industrial sectors in India. It contributes 5% to the country's total GDP and India is the 6th largest exporter of textiles globally. It uses different raw materials like cotton, woollen, and synthetic fibers [1]. The problem of the textile industry is the massive consumption of water which transform into highly loaded by different chemicals of wastewater [2]; this wastewater contains chemicals like acids, alkalis, dyes, hydrogen peroxide, starch, surfactants dispersing agents, and soaps of metals, organic and inorganic chemicals [3,4]. The textile industry is estimated to use more water than any other industry and, almost all wastewater discharged is highly polluted and thus has a serious environmental impact. The level of dissolved oxygen decreases continuously and is a serious issue concerning the aquatic ecosystem. The dissolved oxygen should be at least 5 mg/l for survival of aquatic life [5]. Averagesized textiles mills consume water about 200 L per kg of fabric processed per day [6,7]. According to the World Bank estimation, textile dyeing and finishing

treatment are given to a fabric that generates around 17 to 20 percent of industrial wastewater [7].These effluents contain high amounts of fatty acids, proteins, carbohydrates, and other plant materials. The effluents are diversified, and majorly possess higher amount of organic compounds of biodegradable nature [8], but their high amount results in a severe impact on environment [9,10, 11,12, 13, 14, 15].

Textile industrial effluent having dyes and other chemicals adversely affect to aquatic as well as industrial agriculture land. Because of some unwillingness and profit-making attitude their wastewater treatment plant not even working, and some are suffering due to shortage of material, time, infrastructure. land. manpower. and capital consumption [16]. Textile wastewater treatment is majorly done in effluent treatment plants (ETP). This treatment plant follows a series of treatment processes that mainly focus on different water quality parameters such as pH, temperature, color, electrical conductivity (EC), alkalinity, acidity, total dissolved solids (TDS),