

ScienceDirect

Journal of Alloys and Compounds Volume 859, 5 April 2021, 157829

A high performance flexible solid-state asymmetric supercapacitor based on composite of reduced graphene oxide@dysprosium sulfide nanosheets and manganese oxide nanospheres

P.P. Bagwade a, D.B. Malavekar a, T.T. Ghogare a, S.B. Ubale a, V.J. Mane a, R.N. Bulakhe b, I. In b c, C.D. Lokhande a 🝳 🖂

Show more 🗸

😪 Share 🍠 Cite

https://doi.org/10.1016/j.jallcom.2020.157829 A Get rights and content A

Abstract

The reduced graphene oxide@dysprosium sulfide (rGO@Dy₂S₃) composite and MnO₂ films are synthesized using successive ionic layer adsorption and reaction and from chemical bath deposition methods, respectively. Addition of rGO in Dy₂S₃ film enhances specific surface area from 40 to 78 m²g⁻¹. Using these films flexible solid-state symmetric; rGO@Dy₂S₃//Dy₂S₃@rGO and asymmetric; MnO₂//Dy₂S₃@rGO <u>supercapacitor</u> devices are fabricated. The solid-state <u>asymmetric supercapacitor</u> device exhibits specific energy of 41 Wh kg⁻¹ at specific power 1330Wkg⁻¹. The stability of <u>asymmetric supercapacitor</u> is 86% after 5000 cycles and flexibility of 82% at the bending angle 165°. This work highlights the first time use of rGO@Dy₂S₃ composite <u>thin film</u> material to fabricate symmetric and asymmetric <u>supercapacitor</u> devices and also demonstrates the superior performance of asymmetric device than symmetric one.

Graphical abstract

Download : Download high-res image (220KB) Download : Download full-size image