

Journal of Physics and Chemistry of Solids

Volume 141, June 2020, 109425

Enhanced energy density of flexible asymmetric solid state supercapacitor device fabricated with amorphous thin film electrode materials

 $\frac{\text{Dhanaji B. Malavekar}}{\text{D. Lokhande}}^{a}, \frac{\text{Vaibhav C. Lokhande}}{\text{D. Lokhande}}^{b}, \frac{\text{Vikas J. Mane}}{\text{Vikas J. Mane}}^{a}, \frac{\text{Shivaji B. Ubale}}{\text{B. Ubale}}^{a}, \frac{\text{Umakant M. Patil}}{\text{Chandrakant D. Lokhande}}^{a} \stackrel{\wedge}{\nearrow} \boxtimes$

Show more ✓

https://doi.org/10.1016/j.jpcs.2020.109425 $\, \nearrow \,$ Get rights and content $\, \nearrow \,$

Abstract

Supercapacitors have recently received immense interest in scientific community, as a complementary technology to batteries, to meet the various requirements for energy usage in practice. Amorphous MnO₂ and CuS thin films are prepared on stainless steel-304 (SS) substrate by chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR) methods, respectively. Asymmetric flexible solid state supercapacitor fabricated with configuration of SS/A-MnO₂/Polyvinyl acetate (PVA)-Na₂SO₄/A-CuS/SS delivered an impressive specific energy of 57.4Wh kg⁻¹ at specific power 317Wkg⁻¹ and excellent cycling stability over 10,000 cycles with capacitive retention of 84%. Moreover, series configuration of two asymmetric devices shows the capability of powering 211 red LEDs for ~150s after charging for 30s.

Graphical abstract

(A) FE-SEM of amorphous MnO₂, (B) The XRD graphs of <u>Amorphous</u> MnO₂ and CuS, (C) Comparision of energy density and power density of SS/A-CuS/Polyvinyl acetate (PVA)-Na₂SO₄/A-MnO₂/SS (D) Assembly of 5×5cm² SS/A-CuS/Polyvinyl acetate (PVA)-Na₂SO₄/A-MnO₂/SS solid state flexible asymmetric supercapacitor device with amorphous MnO₂ as an anode and amorphous CuS as a cathode, and (E) FE-SEM of amorphous CuS, and (F) Stability graph of supercapacitor device.