

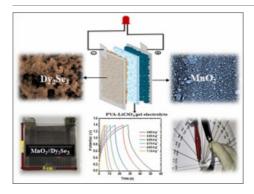
Synthetic Metals

Volume 287, July 2022, 117075

SILAR synthesized dysprosium selenide (Dy₂Se₃) thin films for hybrid electrochemical capacitors

S.D. Khot^a, D.B. Malavekar^a, R.P. Nikam^a, S.B. Ubale^a, P.P. Bagwade^a, D.J. Patil^a, V.C. Lokhande^b, C.D. Lokhande^a 2 🖂

Show more \checkmark


😪 Share 🍠 Cite

https://doi.org/10.1016/j.synthmet.2022.117075 A Get rights and content A

Abstract

As the necessity of energy storage is continuously increasing, new materials have been investigated for electrochemical energy storage, especially for <u>electrochemical capacitors</u>. These storage devices are rapidly convertible as well as air pollution free. Therefore, a number of materials have been explored as electrode materials for <u>supercapacitors</u> to fulfill different requirements of electrochemical energy storage. Herewith, <u>dysprosium</u> selenide (Dy₂Se₃) films were prepared using the simple successive ionic layer adsorption and reaction (SILAR) method and characterized using different physico-chemical techniques. The specific capacitance (C_s) of 92Fg⁻¹ was obtained at the current density of 2.85Ag⁻¹ in 1 M LiClO₄ electrolyte with a retention of 85% over 5000 galvanostatic charge-discharge (GCD) cycles performed at a current density of 4Ag⁻¹. The flexible solid-state hybrid electrochemical capacitor of configuration Dy₂Se₃/LiClO₄- PVA/MnO₂ showed C_s of 83Fg⁻¹ and specific energy of 18Whkg⁻¹ at a specific power of 2.7kWkg⁻¹. This hybrid device retained 92% of capacitance at a device bending angle of 160°. These results demonstrate the facile synthesis of Dy₂Se₃ and its possible use in electrochemical energy storage applications.

Graphical Abstract

Download : Download high-res image (203KB) Download : Download full-size image

Introduction