SILAR synthesized nanostructured ytterbium sulfide thin film electrodes for symmetric supercapacitors

Original Paper Published: 08 April 2021
Volume 25, pages 1753-1764, (2021) Cite this article

Journal of Solid State
Electrochemistry

Aims and scope
Submit manuscript
S. B. Ubale, S. B. Kale, V. J. Mane, P. P. Bagwade \& C. D. Lokhande \square
®. 416 Accesses 【6 9 Citations Explore all metrics \rightarrow

Abstract

A simple and inexpensive successive ionic layer adsorption and reaction (SILAR) method was used for synthesis of ytterbium sulfide $\left(\mathrm{Yb}_{2} \mathrm{~S}_{3}\right)$ thin film. The valence states and crystal structure of $\mathrm{Yb}_{2} \mathrm{~S}_{3}$ thin film material were identified using X-ray photoelectron spectroscopy and X-ray diffraction analysis, respectively. Wettability test of $\mathrm{Yb}_{2} \mathrm{~S}_{3}$ thin film showed hydrophilic nature with the value of 21.70°. The surface texture of $\mathrm{Yb}_{2} \mathrm{~S}_{3}$ thin film was examined using field emission scanning electron microscope (FE-SEM). The specific surface area and pore size distribution were measured using the Brunarer-Emmet-Teller (BET) and Barrette-Joynere-Halendar (BJH) methods. The supercapacitive performance of $\mathrm{Yb}_{2} \mathrm{~S}_{3}$ thin film was studied using cyclic voltammetry, galvanostatic

