SPRINGER LINK

 \equiv Menu

Q Search

Login

Cart

Home Journal of Solid State Electrochemistry Article

SILAR synthesized nanostructured ytterbium sulfide thin film electrodes for symmetric supercapacitors

Original Paper Published: 08 April 2021 Volume 25, pages 1753–1764, (2021) Cite this article

Journal of Solid State Electrochemistry

Aims and scope

Submit manuscript

S. B. Ubale, S. B. Kale, V. J. Mane, P. P. Bagwade & C. D. Lokhande 🖂

416 Accesses **9** Citations Explore all metrics \rightarrow

Abstract

A simple and inexpensive successive ionic layer adsorption and reaction (SILAR) method was used for synthesis of ytterbium sulfide (Yb₂S₃) thin film. The valence states and crystal structure of Yb₂S₃ thin film material were identified using X-ray photoelectron spectroscopy and X-ray diffraction analysis, respectively. Wettability test of Yb₂S₃ thin film showed hydrophilic nature with the value of 21.70°. The surface texture of Yb₂S₃ thin film was examined using field emission scanning electron microscope (FE-SEM). The specific surface area and pore size distribution were measured using the Brunarer-Emmet-Teller (BET) and Barrette-Joynere-Halendar (BJH) methods. The supercapacitive performance of Yb₂S₃ thin film was studied using cyclic voltammetry, galvanostatic