B. Sc. (Part - III) (Semester - VI) (CBCS) Examination, June – 2022 MATHEMATICS DSE – F10: Linear Algebra (Paper – IV)

Sub. Code: 81663

Question Bank

MULTIPLE CHOICE QUESTIONS

Q. Select the correct alternative for each of the following.

1. A zero vector is always _____.

____·

- i) linearly dependent ii) linearly independent
- iii) member of any basis iv) none of these

2. The number of vectors in any basis of a vector space *V* is called ______ of *V*.

i) rank ii) nullity iii) order iv) dimension

3. If $T: U \to V$ is a linear transformation such that dim U = 4 and nullity T = 2 then rank of T is

10. If dim V = n and $S = \{v_1, v_2, ..., v_n\}$ spans V then S is ______ of V. i) a subspace ii) a basis iii) a linearly dependent subset iv) the smallest subspace 11. A linear transformation $T: V \to W$ is non singular if _____. i) *T* is not one- one *T* is not onto ii) Ker $T = \{0\}$ iii) iv) Range $T = \{0\}$ 12. If T is a linear operator on R^2 defined by $T(x_1, x_2) = (0, 0)$ then rank of T =_____. ii) 0 i) 3 iii) 2 iv) 1 13. In an inner product space V, for any $u, v \in V$, $|(u, v)| \leq$ _____. ii) $||u||^2 \cdot ||v||^2$ i) ||u|| + ||v||iv) ||u|| . ||v||iii) ||u|| - ||v||14. A set $\{u_1, u_2, ..., u_n\}$ of vectors in an Inner product space V is said to be orthogonal if _____. i) $(u_i, u_j) = 0$ for all $i \neq j$ ii) $(u_i, u_j) \neq 0$ for all $i \neq j$ iii) $(u_i, u_i) = 0$ for all i iv) $(u_i, u_i) = 1$ for all i15. The eigen values of the matrix $\begin{bmatrix} -5 & 6 & 4 \\ 0 & 2 & 3 \\ 0 & 0 & 1 \end{bmatrix}$ are _____. i) 1, 2, 3 ii) -5, 2, 0 iii) 3, 4, 6 iv) -5, 2, 1 16. If T(1, 1) = (2, 2) then ______ is an eigen value of *T*. i) 0 ii) 1 iii) 2 iv) 3 17. Which of the following set is a linearly independent subset of $\mathbb{R}^3(\mathbb{R})$? i) $\{(1,0,0), (2,2,0), (1,1,0)\}$ ii) $\{(1,0,0), (1,1,1), (0,0,0)\}$ iii) $\{(1,0,0), (0,1,0), (0,0,1)\}$ iv) $\{(1,0,0), (2,1,0), (1,1,0)\}$

18. Let $\{u, v, w\}$ be a linearly independent set in a vector space. Then which of the following is correct?

i) u is a linear combination of v and w.

ii) $\{u, v, u + v\}$ is linearly independent.

iii) au + bv + cw = 0 for some nonzero scalars *a*, *b* and *c*.

iv) $\{u, u + v, u + v + w\}$ is linearly independent.

19. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation and $\{e_1 = (1, 0), e_2 = (0, 1)\}$ be the standard basis of \mathbb{R}^2 . If $T(e_1) = (2, 1)$ and $T(e_2) = (1, 3)$ then T(x, y) =_____

i) (2x + y, x)ii) (2x, 3y)iii) (2x + y, x + 3y)iv) (x + y, x - y)

20. Let T be a linear operator on \mathbb{R}^3 , defined by

$$T(x, y, z) = (x + z, x + y + 2z, 2x + y + 3z)$$

Then _____

i) $(3, 3, -3) \in \text{Ker } T$	ii) $(1, 2, 3) \in \text{Ker } T$
iii) Ker T is the empty set	iv) Ker $T = \{0\}$

21. Let V be the inner product space of real polynomials of degree at most 2 with respect to the inner product defined by

22. If $\{w_1, w_2, \dots, w_n\}$ is an orthonormal set in an inner product space V, then

$$\sum_{i=1}^{n} |\langle w_i, v \rangle|^2 \le ||v||^2 \text{ for all } v \in V$$

This property is known as _____

i) Sylvester's law ii) Cauchy – Schwarz inequality

iii) Triangle inequality iv) Bessel's inequality 23. If one Eigen value of the matrix $\begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix}$ is 5 then the second is _____

i) 2 ii) -2 iii) -1 iv) -5

24 Two matrices *A*, *B* are said to be similar matrices if there exists a non-singular matrix *P* such that _____

i)
$$B = P^{-1}AP$$
 ii) $B = P^{-1}PA$ iii) $A = B$ iv) $AB = PA$

25. Let $S = \{(-1, 0, 1), (2, 1, 4)\}$. The value of *k* for which the vector (3k + 2, 3, 10) belongs to the linear span of *S* is

i) 2 ii) -2 iii) 8 iv) 3

26. Which of the following is incorrect?

i) A basis of a vector space is a maximal linearly independent set.

ii) A minimal generating subset of a vector space V is a basis for V.

iii) Any two bases of a F. D. V. S. have same number of vectors.

iv) If dim V = n, then any n + 1 vectors in V are linearly independent.

27. Let $T: V \to W$ be a linear transformation and dim Range T = 3 and dim V = 8. Then Nullity of $T = _$ _____

28. If $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (x + y, x) is an invertible linear transformation, then $T^{-1}(a, b) = _$ _____

i)
$$(a, a-b)$$
 ii) $(a, a+b)$ iii) $(b, a+b)$ iv) $(b, a-b)$

29. If *V* is an Inner product space and $x, y \in V$ then $||x + y||^2 + ||x - y||^2 =$ ______. i) $2(||x||^2 - ||y||^2)$ ii) $||x||^2 + ||y||^2$ iii) $2(||x||^2 + ||y||^2)$ iv) $||x||^2 - ||y||^2$ 30. The norm of vector u = (1, -2, 5) with respect to Euclidean inner product is ______. i) $\sqrt{30}$ ii) $\sqrt{22}$ iii) $2\sqrt{5}$ iv) $6\sqrt{5}$

31. Let *c* be an eigen value of a linear operator *T* on *V*. Then the set $\{v \in V \mid T(v) = cv\}$ is called ______ of *T*.

i) eigen space	ii) null space
iii) range	iv) kernel

32. The characteristic polynomial of the matrix $\begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$ is _____ i) $x^2 - 2x + 3$ ii) $x^2 + 3x - 10$ iii) $x^2 - 3x$ iv) $x^2 - 3x - 10$

33. If $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n = 0$, where $v_1, v_2, ..., v_n$ are linearly independent vectors in a vector space V(F), then _____.

i) $\alpha_i = 0$ for all $i = 1, 2,, n$	ii) $\alpha_i \neq 0$ for all $i = 1, 2,, n$
--	--

iii) $\alpha_i = 0$ for exactly one *i* iv) $\alpha_i \neq 0$ for at least one *i*

34. The set $S = \{(2, 4), (-1, 3), (6, -7)\}$ of vectors in \mathbb{R}^2 is ______.

i) a linearly independent subset ii) a basis of R^3

iii) a linearly dependent subset iv) an orthogonal set

35. The identity transformation $I: V \to V$ defined by I(v) = v, $\forall v \in V$ then Kernel of I =V i) ii) {0} iv) None of these iii) the empty set 36. If $T: V \to W$ and $S: W \to U$ are two linear transformations such that ST is onto then _____. i) *S* is onto ii) T is one – one iii) S is one – one iv) *T* is onto 37. If u = (-1, 1, 2) and v = (2, 1, 0) then ||u + v|| =_____. i) $\sqrt{13}$ ii) 13 $\sqrt{3}$ iii) iv) 3 38. For all u, v in an inner product space V, the inequality $||u + v|| \le ||u|| + ||v||$ is called _____ inequality. i) Cauchy - Schwarz ii) Minkowski iii) Cauchy iv) Triangle 39. The characteristic polynomial of the matrix $\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$ is ______. x^2 ii) $x^2 + 1$ i) iii) $x^2 - 1$ iv) $(x-1)^2$ 40. The constant term of the characteristic polynomial of a square matrix A is _____. i) 1 ii) 0 iv) $(-1)^n \det A$ iii) trace of A -----*@*-----

8 Marks Questions

- 1. Define a subspace of a vector space. Prove that a non-empty subset *W* of a vector space V(F) is a subspace of *V* if and only if $\alpha x + \beta y \in W$ for $\alpha, \beta \in F$ and $x, y \in W$.
- Let V and W be two vector spaces over F. Let {v₁, v₂, ..., v_n} be a basis of V and w₁, w₂, ..., w_n be any vectors in W. Then prove that there exists a unique linear trassformation T: V → W such that T(v_i) = w_i, i = 1, 2, ..., n.
- 3. Define an inner product space. If V is an inner product space then prove that
 - (i) $||u + v|| \le ||u|| + ||v||$ and
 - (ii) $||u + v||^2 + ||u v||^2 = 2(||u||^2 + ||v||^2)$ for all $u, v \in V$.
- 4. Define a subspace of a vector space. Prove that a necessary and sufficient condition for a nonempty subset W of a vector space V(F) to be a subspace of V is that W is closed under addition and scalar multiplication.
- 5. State and prove rank nullity theorem.
- 6. Let V be a non-trivial inner product space of dimension n. Prove that V has an orthonormal basis.
- Let V be a vector space and S be a non-empty subset of V. Prove that the linear span L(S) is the smallest subspace of V containing S.
- 8. Let V be an inner product space. Then prove that $|(u, v)| \le ||u|| \cdot ||v||$ for all $u, v \in V$.
- 9. Let $T: V \to U$ be a linear transformation then prove that

$$\frac{V}{Ker T} \cong Range T = T(V)$$

- 10. If V is a F.D.V.S. and $\{v_1, v_2, v_3, \dots, v_r\}$ is a Linearly independent subset of V, then show that it can be extended to form a basis of V.
- 11. If A and B are two subspaces of a vector space V(F), then

$$\frac{A+B}{A} \cong \frac{B}{A \cap B}$$
12. Find eigen values and eigen vectors of the matrix
$$\begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 4 \\ 0 & 0 & 2 \end{bmatrix}$$
.

13. If $\{w_1, w_2, \dots, w_n\}$ is an orthonormal set in an inner product space V, then prove that

$$\sum_{i=1}^{n} |\langle w_i, v \rangle|^2 \le ||v||^2 \text{ for all } v \in V$$

- 14. Prove that a Linear transformation $T: V \to W$ is non-singular if and only if T carries each Linearly independent subset of V onto a Linearly independent subset of W.
- 15. Let S be a finite subset of a vector space V such that V = L(S) then prove that there exists a subset of S which forms a basis of V.

*@*_____

4 Marks Questions

- Determine whether the vectors (1, 0, 1), (1, 1, 0), (-1, 0, 1) are linearly dependent or linearly independent.
- 2. Define the kernel of a homomorphism. Prove that the kernel of a homomorphism $T: V \to U$ is a subspace of *V*.
- 3. Show that the linear operator *T* on R^3 defined by T(x, y, z) = (x + y, y + z, x + y + z) is invertible and find its inverse.
- 4. If *S* is an orthogonal set of non-zero vectors in an inner product space *V* then prove that *S* is a linearly independent set.
- 5. Obtain an orthonormal basis with respect to the standard inner product for R^3 generated by (1,0,0), (1,1,1) and (1,2,3).
- 6. Find eigen values of the matrix $\begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix}$.
- 7. If $T: V \to U$ is a linear transformation then prove that Ker $T = \{0\}$ if and only if T is one one.
- 8. Show that intersection of two subspaces of a vector space V is a subspace of V.
- 9. Find the rank and nullity of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x, y) = (x, x + y, y).
- 10. Let V be an inner product space. Then prove that $||x + y|| \le ||x|| + ||y||$, for all $x, y \in V$.
- 11. Show that the vectors (1, -2, 3), (5, 6, -1) and (3, 2, 1) are linearly dependent in \mathbb{R}^3 .
- 12. If $c \neq 0$ is an eigen value of an invertible operator T then prove that c^{-1} is an eigen value of T^{-1} .
- 13. If $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined as T(x, y, z) = (x, x + y, x + y + z), then show that T is a linear transformation.
- 14. Show that the vectors (1, 0, 1), (0, 1, 1), (1, 1, 1) are linearly independent in \mathbb{R}^3 .

- 15. Define the Range of a linear transformation. Prove that the Range of a linear transformation $T: V \rightarrow U$ is a subspace of U.
- 16. Let *T* be a linear operator on a finite dimensional vector space *V* over *F*. Then prove that $c \in F$ is an eigen value of *T* if and only if T cI is singular.
- 17. Obtain an orthonormal basis with respect to the standard inner product for the subspace of R^4 generated by (1, 0, 2, 0), (1, 2, 3, 1).
- 18. Find eigen values of the matrix $\begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 4 \\ 0 & 0 & 2 \end{bmatrix}$.
- 19. Show that the sum of two subspaces of a vector space V(F) is a subspace of V.
- 20. If $T: V \to U$ is a homomorphism, then show that
 - (i) T(0) = 0 (ii) T(-x) = -T(x)
- 21. Determine whether or not $W = \{(a, b, c) \in \mathbb{R}^3 : b = a^2\}$ is a subspace of \mathbb{R}^3 .
- 22. If dim V = n, then show that any n + 1 vectors in V are linearly dependent.
- 23. Let *V* be an inner product space. Then prove that for all $x, y \in V$,

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

- 24. Let T be a linear operator on a vector space V. Define of Eigen space of T associated with Eigen value c. Show that the Eigen space is a subspace of V.
- 25. If S_1 and S_2 are subsets of a vector space V, then show that $L(S_1 \cup S_2) = L(S_1) + L(S_2)$.
- 26. Determine whether or not $F: \mathbb{R}^3 \to \mathbb{R}^2$ defined by F(x, y, z) = (|x|, y + z) is a linear transformation.
- 27. Let $T: V \to W$ and $S: W \to U$ be two linear transformations. If *ST* is one one then prove that *T* is one-one.
- 28. If $T: V \rightarrow V$ be a linear transformation, then prove that the following statements are equivalent:
 - (i) Range $T \cap Ker T = \{0\}$
 - (ii) If T(T(v)) = 0 then $T(v) = 0, v \in V$.
- 29. Let u = (-2, -1, 4, 5), v = (3, 1, -5, 7), w = (-6, 2, 1, 1) in Euclidean inner product space \mathbb{R}^4 . Find (a) ||4u 2v + w|| and (b) ||||u v||w||.
- 30. Let P_2 be the inner product space of polynomials of degree at most 2 with respect to the inner product defined as:

$$(p, q) = \int_{-1}^{1} p(x) q(x) dx \quad \forall p, q \in P_2$$

Show that p = x and $q = x^2$ are orthogonal in P_2 . Find $||p + q||^2$.