B. Sc. (Part - III) (Semester - VI) (CBCS) Examination, June - 2022
 MATHEMATICS

DSE - F10: Linear Algebra (Paper - IV)

Sub. Code: 81663

Question Bank

MULTIPLE CHOICE QUESTIONS

Q. Select the correct alternative for each of the following.

1. A zero vector is always \qquad .
i) linearly dependent
ii) linearly independent
iii) member of any basis
iv) none of these
2. The number of vectors in any basis of a vector space V is called \qquad of V.
i) rank
ii) nullity
iii) order
iv) dimension
3. If $T: U \rightarrow V$ is a linear transformation such that $\operatorname{dim} U=4$ and nullity $T=2$ then rank of T is
\qquad .
i) 1
ii) 2
iii) 0
iv) 4
4. If $T: R^{2} \rightarrow R^{2}$ and $S: R^{2} \rightarrow R^{3}$ defined by $T(x, y)=(y, x)$ and $S(x, y)=(x+y, x-y, y)$ then $S T(x, y)=$ \qquad .
i) $(y+x, y-x, x)$
ii) $(x-y, x+y, x)$
iii) $(x-y, x+y, y)$
iv) $(y+2 x, y-x, x)$
5. If $u=(4,-3,-2,1)$ then norm of u with respect to Euclidean inner product in \mathbb{R}^{4} is \qquad .
i) 30
ii) 26
iii) $\sqrt{30}$
iv) $\sqrt{26}$
6. If V is an inner product space and $u, v \in V$ such that u is orthogonal to v then \qquad .
i) $\|u+v\|^{2}=0$
ii) $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$
iii) $\|u+v\|^{2} \leq\|u\|^{2}-\|v\|^{2}$
iv) $\|u+v\|^{2} \geq\|u\|^{2}+\|v\|^{2}$
7. If $A=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$ then the characteristic polynomial of A is \qquad .
i) $x^{2}+1$
ii) $x^{2}+2 x+1$
iii) $x^{2}+x$
iv) $x^{2}-1$
8. If $\lambda=1 / 2$ is an eigen value of an invertible operator T then eigen value of T^{-1} is \qquad .
i) -2
ii) $1 / 2$
iii) 2
+iv) $-1 / 2$
9. If W is a subspace of V then $L(W)=$ \qquad .
i) W
ii) V
iii) $\{0\}$
iv) ϕ
10. If $\operatorname{dim} V=n$ and $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ spans V then S is \qquad of V.
i) a subspace
ii) a basis
iii) a linearly dependent subset
iv) the smallest subspace
11. A linear transformation $T: V \rightarrow W$ is non singular if \qquad -.
i) T is not one- one
ii) T is not onto
iii) $\quad \operatorname{Ker} T=\{0\}$
iv) Range $T=\{0\}$
12. If T is a linear operator on R^{2} defined by $T\left(x_{1}, x_{2}\right)=(0,0)$ then rank of $T=$ \qquad .
i) 3
ii) 0
iii) 2
iv) 1
13. In an inner product space V, for any $u, v \in V,|(u, v)| \leq$ \qquad .
i) $\|u\|+\|v\|$
ii) $\|u\|^{2} \cdot\|v\|^{2}$
iii) $\|u\|-\|v\|$
iv) $\|u\| \cdot\|v\|$
14. A set $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ of vectors in an Inner product space V is said to be orthogonal if \qquad .
i) $\quad\left(u_{i}, u_{j}\right)=0$ for all $i \neq j$
ii) $\left(u_{i}, u_{j}\right) \neq 0$ for all $i \neq j$
iii) $\left(u_{i}, u_{i}\right)=0$ for all i
iv) $\left(u_{i}, u_{i}\right)=1$ for all i
15. The eigen values of the matrix $\left[\begin{array}{ccc}-5 & 6 & 4 \\ 0 & 2 & 3 \\ 0 & 0 & 1\end{array}\right]$ are \qquad .
i) $1,2,3$
ii) $-5,2,0$
iii) $3,4,6$
iv) $-5,2,1$
16. If $T(1,1)=(2,2)$ then \qquad is an eigen value of T.
i) 0
ii) 1
iii) 2
iv) 3
17. Which of the following set is a linearly independent subset of $\mathbb{R}^{3}(\mathbb{R})$?
i) $\{(1,0,0),(2,2,0),(1,1,0)\}$
ii) $\{(1,0,0),(1,1,1),(0,0,0)\}$
iii) $\{(1,0,0),(0,1,0),(0,0,1)\}$
iv) $\{(1,0,0),(2,1,0),(1,1,0)\}$
18. Let $\{u, v, w\}$ be a linearly independent set in a vector space. Then which of the following is correct?
i) u is a linear combination of v and w.
ii) $\{u, v, u+v\}$ is linearly independent.
iii) $a u+b v+c w=0$ for some nonzero scalars a, b and c.
iv) $\{u, u+v, u+v+w\}$ is linearly independent.
19. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation and $\left\{e_{1}=(1,0), e_{2}=(0,1)\right\}$ be the standard basis of \mathbb{R}^{2}. If $T\left(e_{1}\right)=(2,1)$ and $T\left(e_{2}\right)=(1,3)$ then $T(x, y)=$ \qquad
i) $(2 x+y, x)$
ii) $(2 x, 3 y)$
iii) $(2 x+y, x+3 y)$
iv) $(x+y, x-y)$
20. Let T be a linear operator on \mathbb{R}^{3}, defined by

$$
T(x, y, z)=(x+z, \quad x+y+2 z, \quad 2 x+y+3 z)
$$

Then \qquad
i) $(3,3,-3) \in \operatorname{Ker} T$
ii) $(1,2,3) \in \operatorname{Ker} T$
iii) $\operatorname{Ker} T$ is the empty set
iv) $\operatorname{Ker} T=\{0\}$
21. Let V be the inner product space of real polynomials of degree at most 2 with respect to the inner product defined by

$$
\langle f, g\rangle=\int_{0}^{1} f(x) \cdot g(x) d x
$$

If $f(x)=2 x$ and $g(x)=x^{2}$, then $\langle f, g\rangle=$ \qquad
i) 1
ii) -1
iii) 2
iv) $\frac{1}{2}$
22. If $\left\{w_{1}, w_{2}, \ldots \ldots, w_{n}\right\}$ is an orthonormal set in an inner product space V, then

$$
\sum_{i=1}^{n}\left|\left\langle w_{i}, v\right\rangle\right|^{2} \leq\|v\|^{2} \text { for all } v \in V
$$

This property is known as \qquad
i) Sylvester's law
ii) Cauchy - Schwarz inequality
iii) Triangle inequality
iv) Bessel's inequality
23. If one Eigen value of the matrix $\left[\begin{array}{rr}4 & 2 \\ 3 & -1\end{array}\right]$ is 5 then the second is \qquad
i) 2
ii) -2
iii) $\quad-1$
iv) -5

24 Two matrices A, B are said to be similar matrices if there exists a non-singular matrix P such that \qquad
i) $B=P^{-1} A P$
ii) $B=P^{-1} P A$
iii) $A=B$
iv) $A B=P A$
25. Let $S=\{(-1,0,1),(2,1,4)\}$. The value of k for which the vector $(3 k+2,3,10)$ belongs to the linear span of S is \qquad
i) 2
ii) -2
iii) 8
iv) 3
26. Which of the following is incorrect?
i) A basis of a vector space is a maximal linearly independent set.
ii) A minimal generating subset of a vector space V is a basis for V.
iii) Any two bases of a F. D. V. S. have same number of vectors.
iv) If $\operatorname{dim} V=n$, then any $n+1$ vectors in V are linearly independent.
27. Let $T: V \rightarrow W$ be a linear transformation and dim Range $T=3$ and $\operatorname{dim} V=8$. Then Nullity of $T=$ \qquad
i) 5
ii) 11
iii) 24
iv) 3
28. If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=(x+y, x)$ is an invertible linear transformation, then $T^{-1}(a, b)=$ \qquad
i) $(a, a-b)$
ii) $(a, a+b)$
iii) $(b, a+b)$
iv) $(b, a-b)$
29. If V is an Inner product space and $x, y \in V$ then $\|x+y\|^{2}+\|x-y\|^{2}=$ \qquad .
i) $2\left(\|x\|^{2}-\|y\|^{2}\right)$
ii) $\|x\|^{2}+\|y\|^{2}$
iii) $2\left(\|x\|^{2}+\|y\|^{2}\right)$ iv) $\|x\|^{2}-\|y\|^{2}$
30. The norm of vector $u=(1,-2,5)$ with respect to Euclidean inner product is \qquad
i) $\sqrt{30}$
ii) $\sqrt{22}$
iii) $2 \sqrt{5}$
iv) $6 \sqrt{5}$
31. Let c be an eigen value of a linear operator T on V. Then the set $\{v \in V \mid T(v)=c v\}$ is called \qquad of T.
i) eigen space
ii) null space
iii) range
iv) kernel
32. The characteristic polynomial of the matrix $\left[\begin{array}{ll}1 & 4 \\ 3 & 2\end{array}\right]$ is \qquad
i) $x^{2}-2 x+3$
ii) $x^{2}+3 x-10$
iii) $x^{2}-3 x$
iv) $x^{2}-3 x-10$
33. If $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}=0$, where $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent vectors in a vector space $V(F)$, then \qquad .
i) $\quad \alpha_{i}=0$ for all $i=1,2, \ldots, n$
ii) $\quad \alpha_{i} \neq 0$ for all $i=1,2, \ldots, n$
iii) $\alpha_{i}=0$ for exactly one i
iv) $\alpha_{i} \neq 0$ for at least one i
34. The set $S=\{(2,4),(-1,3),(6,-7)\}$ of vectors in R^{2} is \qquad .
i) a linearly independent subset
ii) a basis of R^{3}
iii) a linearly dependent subset
iv) an orthogonal set
35. The identity transformation $I: V \rightarrow V$ defined by $I(v)=v, \forall v \in V$ then Kernel of $I=$
\qquad -.
i) V
ii) $\{0\}$
iii) the empty set
iv) None of these
36. If $T: V \rightarrow W$ and $S: W \rightarrow U$ are two linear transformations such that $S T$ is onto then \qquad .
i) S is onto
ii) T is one - one
iii) S is one - one
iv) T is onto
37. If $u=(-1,1,2)$ and $v=(2,1,0)$ then $\|u+v\|=$ \qquad .
i) $\sqrt{13}$
ii) 13
iii) $\sqrt{3}$
iv) 3
38. For all u, v in an inner product space V, the inequality $\|u+v\| \leq\|u\|+\|v\|$ is called
\qquad inequality.
i) Cauchy - Schwarz
ii) Minkowski
iii) Cauchy
iv) Triangle
39. The characteristic polynomial of the matrix $\left[\begin{array}{cc}0 & i \\ i & 0\end{array}\right]$ is \qquad .
i) x^{2}
ii) $x^{2}+1$
iii) $x^{2}-1$
iv) $(x-1)^{2}$
40. The constant term of the characteristic polynomial of a square matrix A is \qquad .
i) 1
ii) 0
iii) trace of A
iv) $(-1)^{n} \operatorname{det} A$

8 Marks Questions

1. Define a subspace of a vector space. Prove that a non-empty subset W of a vector space $V(F)$ is a subspace of V if and only if $\alpha x+\beta y \in W$ for $\alpha, \beta \in F$ and $x, y \in W$.
2. Let V and W be two vector spaces over F. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis of V and $w_{1}, w_{2}, \ldots, w_{n}$ be any vectors in W. Then prove that there exists a unique linear trasnsformation $T: V \rightarrow W$ such that $T\left(v_{i}\right)=w_{i}, i=1,2, \ldots, n$.
3. Define an inner product space. If V is an inner product space then prove that
(i) $\quad\|u+v\| \leq\|u\|+\|v\|$ and
(ii) $\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right)$ for all $u, v \in V$.
4. Define a subspace of a vector space. Prove that a necessary and sufficient condition for a nonempty subset W of a vector space $V(F)$ to be a subspace of V is that W is closed under addition and scalar multiplication.
5. State and prove rank - nullity theorem.
6. Let V be a non-trivial inner product space of dimension n. Prove that V has an orthonormal basis.
7. Let V be a vector space and S be a non-empty subset of V. Prove that the linear span $L(S)$ is the smallest subspace of V containing S.
8. Let V be an inner product space. Then prove that $|(u, v)| \leq\|u\| .\|v\|$ for all $u, v \in V$.
9. Let $T: V \rightarrow U$ be a linear transformation then prove that

$$
\frac{V}{\operatorname{Ker} T} \cong \text { Range } T=T(V)
$$

10. If V is a F.D.V.S. and $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{r}\right\}$ is a Linearly independent subset of V, then show that it can be extended to form a basis of V.
11. If A and B are two subspaces of a vector space $V(F)$, then

$$
\frac{A+B}{A} \cong \frac{B}{A \cap B}
$$

12. Find eigen values and eigen vectors of the matrix $\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 2 & 4 \\ 0 & 0 & 2\end{array}\right]$.
13. If $\left\{w_{1}, w_{2}, \ldots \ldots, w_{n}\right\}$ is an orthonormal set in an inner product space V, then prove that

$$
\sum_{i=1}^{n}\left|\left\langle w_{i}, v\right\rangle\right|^{2} \leq\|v\|^{2} \text { for all } v \in V
$$

14. Prove that a Linear transformation $T: V \rightarrow W$ is non-singular if and only if T carries each Linearly independent subset of V onto a Linearly independent subset of W.
15. Let S be a finite subset of a vector space V such that $V=L(S)$ then prove that there exists a subset of S which forms a basis of V.

* @ *

4 Marks Questions

1. Determine whether the vectors $(1,0,1),(1,1,0),(-1,0,1)$ are linearly dependent or linearly independent.
2. Define the kernel of a homomorphism. Prove that the kernel of a homomorphism $T: V \rightarrow U$ is a subspace of V.
3. Show that the linear operator T on R^{3} defined by $T(x, y, z)=(x+y, y+z, x+y+z)$ is invertible and find its inverse.
4. If S is an orthogonal set of non-zero vectors in an inner product space V then prove that S is a linearly independent set.
5. Obtain an orthonormal basis with respect to the standard inner product for R^{3} generated by $(1,0,0),(1,1,1)$ and $(1,2,3)$.
6. Find eigen values of the matrix $\left[\begin{array}{ccc}2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2\end{array}\right]$.
7. If $T: V \rightarrow U$ is a linear transformation then prove that $\operatorname{Ker} T=\{0\}$ if and only if T is one one.
8. Show that intersection of two subspaces of a vector space V is a subspace of V.
9. Find the rank and nullity of the linear transformation $T: R^{2} \rightarrow R^{3}$ defined by $T(x, y)=$ $(x, x+y, y)$.
10. Let V be an inner product space. Then prove that $\|x+y\| \leq\|x\|+\|y\|$, for all $x, y \in V$.
11. Show that the vectors $(1,-2,3),(5,6,-1)$ and $(3,2,1)$ are linearly dependent in R^{3}.
12. If $c \neq 0$ is an eigen value of an invertible operator T then prove that c^{-1} is an eigen value of T^{-1}.
13. If $T: R^{3} \rightarrow R^{3}$ is defined as $T(x, y, z)=(x, x+y, x+y+z)$, then show that T is a linear transformation.
14. Show that the vectors $(1,0,1),(0,1,1),(1,1,1)$ are linearly independent in R^{3}.
15. Define the Range of a linear transformation. Prove that the Range of a linear transformation $T: V \rightarrow U$ is a subspace of U.
16. Let T be a linear operator on a finite dimensional vector space V over F. Then prove that $c \in F$ is an eigen value of T if and only if $T-c I$ is singular.
17. Obtain an orthonormal basis with respect to the standard inner product for the subspace of R^{4} generated by $(1,0,2,0),(1,2,3,1)$.
18. Find eigen values of the matrix $\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 2 & 4 \\ 0 & 0 & 2\end{array}\right]$.
19. Show that the sum of two subspaces of a vector space $V(F)$ is a subspace of V.
20. If $T: V \rightarrow U$ is a homomorphism, then show that
(i) $T(0)=0$
(ii) $T(-x)=-T(x)$
21. Determine whether or not $W=\left\{(a, b, c) \in \mathbb{R}^{3}: b=a^{2}\right\}$ is a subspace of \mathbb{R}^{3}.
22. If $\operatorname{dim} V=n$, then show that any $n+1$ vectors in V are linearly dependent.
23. Let V be an inner product space. Then prove that for all $x, y \in V$,

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)
$$

24. Let T be a linear operator on a vector space V. Define of Eigen space of T associated with Eigen value c. Show that the Eigen space is a subspace of V.
25. If S_{1} and S_{2} are subsets of a vector space V, then show that $L\left(S_{1} \cup S_{2}\right)=L\left(S_{1}\right)+L\left(S_{2}\right)$.
26. Determine whether or not $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $F(x, y, z)=(|x|, y+z)$ is a linear transformation.
27. Let $T: V \rightarrow W$ and $S: W \rightarrow U$ be two linear transformations. If $S T$ is one - one then prove that T is one-one.
28. If $T: V \rightarrow V$ be a linear transformation, then prove that the following statements are equivalent:
(i) Range $T \cap \operatorname{Ker} T=\{0\}$
(ii) If $T(T(v))=0$ then $T(v)=0, v \in V$.
29. Let $u=(-2,-1,4,5), v=(3,1,-5,7), w=(-6,2,1,1)$ in Euclidean inner product space \mathbb{R}^{4}. Find (a) $\|4 u-2 v+w\|$ and (b) $\|\|u-v\| w\|$.
30. Let P_{2} be the inner product space of polynomials of degree at most 2 with respect to the inner product defined as:

$$
(p, q)=\int_{-1}^{1} p(x) q(x) \mathrm{dx} \quad \forall p, q \in P_{2}
$$

Show that $p=x$ and $q=x^{2}$ are orthogonal in P_{2}. Find $\|p+q\|^{2}$.

