YASHWANTRAO CHAVAN COLLEGE OF SCIENCE, KARAD Department of Physics

B. Sc. III

Paper XII: Digital & Analog Circuits and Instrumentation Question Bank

Unit-I

1. Digital Electronics

- 1. Give logic symbol and truth table of OR, AND, NAND and NOR gates.
- 2. Why NOR gate is called universal gate?
- 3. Give logic symbol and truth table of NOR, NAND, XOR and XNOR gates.
- 4. State and prove De-Morgan's theorems.
- 5. Explain R-S flip-flop using NAND/NOR gates.
- 6. Explains construction and working of J-K flip-flop.
- 7. Explain half adder circuit.
- 8. Explain full adder circuit.

2. Transistor Amplifier

- 1. Explain DC and AC equivalent circuit for Common Emitter amplifier.
- 2. Explain the frequency response curve of an amplifier. What is the effect of negative feedback on gain response curve?
- 3. Explain the operation of a common emitter transistor amplifier with neat diagram.
- 4. Explain how will you draw DC load line on the output characteristics of a transistor?

3. Sinusoidal Oscillator

- 1. Explain theory of feedback oscillator. Discuss different cases
- 2. What is an oscillator? Explain the difference between amplifier and oscillator.
- 3. Explain positive and negative feedback in amplifier and state its advantages
- 4. Explain different types of waveforms in oscillator
- 5. With suitable diagram, explain the nature of oscillations for tank circuit and expression for frequency
- 6. With a neat diagram explain the action/working of Hartley oscillator

- 7. With a neat diagram explain the action of Colpitt's oscillator
- 8. With a neat diagram explain the circuit operation of phase-shift oscillator
- 9. With a neat diagram explain the circuit operation of crystal oscillator

Unit-II

1. Operational Amplifier

- 1. With a neat diagram explain the working of differential amplifier.
- 2. Explain with neat diagram different types of differential amplifier.
- 3. Differentiate between normal amplifier and differential amplifier.
- 4. Explain the term—(a) Common-mode gain (b) Differential gain (c) CMRR.
- 5. Explain block diagram of operational amplifier.
- 6. State and explain op-amp parameters
- 7. Explain with neat diagram use of Op-Amp as differentiator.
- 8. Explain with neat diagram use of Op-Amp as inverting amplifier
- 9. Explain with neat diagram use of Op-Amp as non-inverting amplifier.
- 10. Explain with neat diagram use of Op-Amp as an adder circuit.
- 11. Explain with neat diagram use of Op-Amp as subtarctor.

2. Timer IC555

- 1. Draw a block diagram of IC-555 and explain function of each block in it.
- 2. Give the pin configuration of IC-555 and explain the function of each pin.
- 3. Explain working of IC 555 as mono-stable multi-vibrator with a neat diagram and obtain expression for pulse width.
- 4. Explain working of IC 555 as a stable multi-vibrator with a neat diagram and obtain expression for frequency. Draw different waveforms of this multi-vibrator.
- 5. Explain working of IC 555 as bistable multi-vibrator with a neat diagram. Draw different waveforms of this multi-vibrator.
- 6. Draw a block diagram of IC-555.
- 7. Give pin configuration of IC-555.

- 8. Draw a circuit diagram for a stable multi-vibrator using IC-555.
- 9. Draw a circuit diagram IC555 bi-stable multi-vibrator.
- 10. Derive expression for pulse width of mono-stable multi-vibrator

3. CRO

- 1. Explain the working principle of CR0. Draw a neat block diagram of CR0 and explain the functions of each block.
- 2. Give the construction of CRT and explain the functions of various components.
- 3. Explain in brief any three uses of CRO.
- 4. What are Lissajous figures? How are they produced?
- 5. Explain how frequency of wave form is measured using direct method?
- 6. Explain how frequency of waveform is measured using indirect method (Lissajous figure method)?