Shivaji University, Kolhapur
 Question Bank For Mar 2022 (Summer) Examination

Subject Code: 81665 Subject Name: Discrete Mathematics

Question Bank

Multiple Choice questions

1) In a disjunction, even if one of the statements is false, the whole disjunction is still \qquad
A) false
B) negated
C) true
D) both true and false
2) The proposition $(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{p})$ is a \qquad .
A) tautology
B) contradiction
C) contingency
D) absurdity
3) If $\mathrm{p} \& \mathrm{q}$ are two statements then $q \rightarrow p$ is called \qquad of $p \rightarrow q$.
A) inverse
B) converse
C) contrapositive
D) none of these
4) $p \rightarrow q$ is logically equivalent to \qquad .
A) $\sim p \vee \sim q$
B) $p \vee \sim q \mathrm{C}) \sim p \vee q$
D) $\sim p \wedge q$
5) The kind of inference $p \rightarrow q, \sim q \quad \therefore \sim p \quad$ is called \qquad .
A) Generalization
B) Modus Tollens
C) Specialization
D) Modus Ponens
6) The base or radix of the quintal number system is \qquad .
A) 6
B) 11
C) 5
D) 7
7) The decimal equivalent of hexadecimal number 3CF is \qquad .
A) 975
B) 865
C) 1110
D) 795
8) The binary addition $1101_{2}+1011_{2}=$ \qquad .
A) 11010_{2}
B) 10110_{2}
C) 11000_{2}
D) 11001_{2}
9) The binary subtraction $111.01_{2}-011.10_{2}=$ \qquad .
A) 010.01_{2}
B) 100.11_{2}
C) 011.11_{2}
D) 100.01_{2}
10) A set of points in a graph are called \qquad .
A) nodes
B) edges
C) fields
D) lines
11) Multi graph is a graph which contains \qquad .
A) Parallel edges but no loops
B) Loops but no Parallel edges
C) Parallel edges \&Loops
D) No parallel edges \& No loops
12) A complete graph on ' n ' vertices has \qquad number of edges.
A) $\frac{n(n+1)}{2}$ B)
B) $\frac{(n-1)}{2}$
C) $\frac{(n+1)}{2}$
D) $\frac{n(n-1)}{2}$
13) A vertex on which no edges are incident is called \qquad .
A) pendent vertex
B) centre of vertex
C) isolated vertex
D)diameter
14) The number of edges in a regular graph of degree 46 and 8 vertices is \qquad
A) 347
B) 230
C) 184
D) 186
15) The kind of inference $\mathrm{p} \quad \therefore \mathrm{p} \vee \mathrm{q} \quad$ is called \qquad .
A) GeneralizationB) Modus Tollens
C) Specialization
D) Contradiction Rule
16) The inverse of "if p then q " is \qquad .
A) "If q then p "B) "If $\sim p$ then $\sim q$ "
C) "If $\sim q$ then $\sim p$ "D) $\sim p \wedge q$
17) The kind of inference $\mathrm{p} \wedge \mathrm{q} \quad \therefore \mathrm{q}$ is called \qquad .
A) Generalization B) Modus Tollens
C) Specialization
D) Contradiction Rule
18) The binary equivalent of octal number 5073is \qquad .
A) 101000101011
B) 101010111011
C) 101001011011
D) 101000111011
19) Every complete graph on ' n ' vertices is an \qquad .
A) $(n-1)$-regular graph
B) n-regular graph
C) $(\mathrm{n}+1)$-regular graph
D) $n / 2$-regular graph
20) Total degree of a graph G with ' 6 'vertices and' $\mathbf{8}$ ' edges is \qquad
A) 12
B) 16
C) 8
D) 6
21)A graph that does not have loops as well as parallel edges is called \qquad
A)multigraph B)pseudograph
C) simple graph
D) trivial graph
21) A circuit that includes every vertex of a graph is called \qquad .
A)Hamiltonian circuit
B)Euler circuit
C) simple circuit
D) none of these
22) The kind of inference $\sim \mathrm{p} \rightarrow \mathrm{c} \therefore \mathrm{p}$ is called \qquad .
A) Generalization
B) Modus Tollens
C) Specialization
D) Contradiction Rule
23) The base or radix of the octal number system is \qquad .
A) 2
B) 16
C) 10
D) 8
24) A Null graph has \qquad .
A) no nodesB) no edges
C) no even vertex
D) none of these
25) The maximum degree of any vertex in a simple graph with n vertices is \qquad
A) $n-1$
B) $n+1$
C) $2 n-1$
D) n
26) The complete graph with four vertices has k edges where k is \qquad
A) 3
B) 4
C) 5
D) 6
27) Number of circuits in any tree is exactly \qquad
A) 1
B) 0
C) infinite
D) none of these
28) A vertex of degree one in any tree is called \qquad
A) Internal Vertex
B) Leaf
C) Forest
D) Isolated Vertex
29) Level of root in any rooted tree is \qquad
A) 0
B) 1
C) 2
D) 3
30) A tree with 21 vertices has \qquad edges
A) 22
B) 20
C) 40
D) 21
31) Total degree of a tree with 25 vertices is \qquad
A) 24
B) 26
C) 48
D) 12
32) The graph $K_{2, n}$ has \qquad edges.
A) $2 n$
B) n
C) 2
D) 3
33) A 5-regular graph with 7 vertices \qquad .
A) is a simple graph
B) is a multigraph
C) can not be drawn
D) is a tree
34) Which of the following is not a proposition?
A) Is mathematical boring?
B) Man landed on the sun last year
C) Diamond is harder than graphite
D) he finished his work and went away
35) The symbols $\Lambda, \vee, \rightarrow$ and \leftrightarrow are called \qquad
A) Propositions
B) connectives
C) statements
D) None of these
36) which of the following Is logically equivalent to $-(-p \rightarrow q)$?
A) $p \wedge q$
B) $p \wedge-q$
C) $-p \wedge q$
D) $-p \wedge-q$
37) Let p be a statement then ' $p \vee(\sim p)$ ' is \qquad .
A) always tautology
B) always contradiction
C) contingency
D) not a statement
38) Sum of weights of all edges involved in graph is called \qquad of graph
A) Total length
B) Total weight
C)Total degree
D) Total distance
39) The law $\sim(p \vee q) \equiv \sim p \wedge \sim q$ is known as \qquad .
A) Idempotent law
B) De-Morgan's law
C) Associative law
D) Distributive Law
1. Assume x is Particular real number and determine whether following statements
(a) and (b)are logicallyEquivalent or not
(a) $x<2$ or it is not same case that $1<x<3$
(b) $x \geq 1$ or either $x<2$ or $x \geq 3$
2. Write each of the following statements in symbolic form and determine which pairs arelogically equivalent ,Include truth tables
i) If it walks like a duck and it talks like a duck, then it is a duck.
ii) Either it does not walk like a duck or it does not talk like a duck, or it is a duck
iii) If it does not walk like a duck and it does not talk like a duck, then it is not a duck.
3. Define Converse and Inverse of conditional statement and write the converse and inverse of given statement 'If today is New Year's Eve,then tomorrow is January'
4. Define Valid Argument. Test the validity of set of premises and conclusion given below
$(\sim p \vee q) \rightarrow r, s \vee \sim q, \sim t, p \rightarrow t,(\sim p \wedge r) \rightarrow \sim s \therefore \sim q$
5. Define Valid Argument. Test the validity of following argument using truth table If the sum of the digits of 371,487 is divisible by 3 , then 371,487 is divisible by 3 . The sum of the digits of 371,487 is divisible by 3
$\therefore 371,487$ is divisible by 3 .
6. You are about to leave for school in the morning \& discover that you didn't have your glasses, you know the following statements are true:
(a) If I was reading the newspaper in the kitchen, then my glasses are on the kitchen table
(b) If my glasses are on the kitchen table, then I saw them at breakfast
(c) I did not see my glasses at breakfast.
(d) Either I was reading the newspaper in the kitchen or in living room
(e) If I was reading the newspaper in living room then my glasses are on the coffee table. Where are the glasses ?
7. State and prove Hand shaking lemma
8. Define Degree of Vertex and show that number of odd degree vertices in any graph is always even
9. Define 'Euler circuit' and prove that if a graph has an Euler circuit then every vertex of graph has positive even degree
10.If a graph G is connected and the degree of every vertex of G is a positive even integer, then prove that G has an Euler Circuit
10. Define 'Tree' and show that a tree with ' n ' vertices has ' $n-1$ ' edges where n is positive integer
11. Define 'Circuit' and prove that If G is any connected graph, C is any circuit in G, and any one of the edges of C is removed from G , then the graph that remains is connected 13.Define 'Tree' and prove that for any positive integer, if G is a Connected graph with n vertices and $n-1$ edges, then G is a tree.
12. find the shortest path from vertex 'a' to remaining vertices of graphG given below using Dijkstra's algorithm

13. Define 'Minimum Spanning Tree' Find the minimum spanning tree and its total weight for graph G given below using Kruskal's Algorithm

14. Define
a) Disjunction of two statements
b) Conjunction of two statements
15. Prepare truth table for $(p \vee q) \wedge \sim(p \wedge q)$
16. Prepare truth table for $(p \wedge q) \wedge \sim r$
17. Assume x is real number and Use De Morgan's laws to write the negation of $-1<x \leq 4$
18. Define a) Tautology \quad b) Contradiction
19. Determine whether the statements $\sim(p \wedge q)$ and $\sim p \wedge \sim q$ are logically equivalent or not
20. Determine whether the statements $p \wedge(q \vee r)$ and $(p \wedge q) \vee(p \wedge r)$ are logically equivalent or not
21. Assume x is real number and Use De Morgan's laws to write the negation of $-2<x<7$
22. Check whether the statement $(p \wedge q) \vee[\sim p \vee(p \wedge \sim q)]$ is Tautology or Contradiction 10. Using truth table show that $(p \oplus q) \oplus r \equiv p \oplus(q \oplus r)$
23. Write the converse, inverse and contra positive of following statement
'If Howard can swim across the island, then Howard can swim across the lake'
12.Rewrite the following statements as conjunction of two if - then statements
'This Quadratic equation has two distinct real roots if and only if, its discriminant is greater than zero'
24. Rewrite the following sentences in if - then form and explain logical relation between themi) I say what I mean ii) I mean what I say
25. Using method of contradiction show that $\sqrt{5}$ is an irrational number
26. Represent given decimal integers into binary notations
i) 55
ii) 287
27. Convert given binary number to decimal number
i) 110101_{2}
ii) 1100101_{2}
28. Evaluate
i) $101001_{2}+10011_{2}$
ii) $101101_{2}-10011_{2}$
29. Convert given Hexadecimal number to decimal number
i) $3 C F_{16}$
ii) $E 0 D_{16}$
30. Convert given Hexadecimal number to binary number i) $4 F A_{16}$
ii) $B 53 D F 8_{16}$
31. Evaluate
i) $1001_{2}+1011_{2}$
ii) $1010100_{2}-10111_{2}$
32. Define
i) Complete Graph
ii) Complete Bipartite Graph
33. if G is graph having p vertices of which r vertices have degree ' k ' while remaining vertices have degree ' $k+1$ ' then show that $r=(k+1) p-2 q$ where q is the number of edges in G
34. Check whether the following graphs are isomorphic or not

35. Check whether the following graphs are isomorphic or not

36. Draw a graph with 5 vertices having degrees $1,2,3,3,5$ respectively
37. Draw
i) $K_{4,2}$
ii) K_{5}
38. Write a short note on konigsberg seven bridge problem.
39. Define 'Adjacency matrix' for a directed graph and draw a directed graph corresponding

To given adjacency Matrix $\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 2 & 1 & 0 & 0\end{array}\right]$
29. Define 'Adjacency matrix' for aundirected graph and draw a undirected graph
corresponding to given adjacency Matrix $\left[\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 1 & 2 & 1 \\ 0 & 2 & 0 & 0 \\ 1 & 1 & 0 & 1\end{array}\right]$
30. Verify Handshaking Lemma For the following graph

