Shivaji University, Kolhapur Question Bank For Mar 2022 (Summer) Examination

Subject Code: 81665 Subject Name: Discrete Mathematics

Question Bank

Multiple Choice questions

1) In a disjunction, even if one of the statements is false, the whole disjunction is still
A) false B) negated C) true D) both true and false
2) The proposition ($p \rightarrow q$) \land ($q \rightarrow p$) is a
A) tautology B) contradiction C) contingency D) absurdity
3) If p & q are two statements then $q \rightarrow p$ is called of $p \rightarrow q$.
A) inverse B) converse C) contrapositive D) none of these
4) $p \rightarrow q$ is logically equivalent to
A) ~ $p \lor ~ q$ B) $p \lor ~ qC$) ~ $p \lor q$ D) ~ $p \land q$
5) The kind of inference $p \rightarrow q$, $\sim q \therefore \sim p$ is called
A) Generalization B) Modus Tollens
C) Specialization D) Modus Ponens
6) The base or radix of the quintal number system is
A) 6 B) 11 C) 5 D) 7
7) The decimal equivalent of hexadecimal number 3CF is
A) 975 B) 865 C) 1110 D) 795
8) The binary addition $1101_2 + 1011_2 = $
A) 11010 ₂ B) 10110 ₂ C) 11000 ₂ D) 11001 ₂
9) The binary subtraction $111.01_2 - 011.10_2 = $
A) 010. 01 ₂ B) 100. 11 ₂ C) 011. 11 ₂ D) 100. 01 ₂

10) A set of points in a graph are called	
A) nodes B) edges C) fields D) lines	
 11) Multi graph is a graph which contains A) Parallel edges but no loops C) Parallel edges & Loops D) No parallel edges & No loops 12) A complete graph on 'n' vertices hasnumber of edges. 	
A) $\frac{n(n+1)}{2}$ B) $\frac{(n-1)}{2}$ C) $\frac{(n+1)}{2}$ D) $\frac{n(n-1)}{2}$	
13) A vertex on which no edges are incident is called	
A) pendent vertex B) centre of vertex	
C) isolated vertex D)diameter	
14) The number of edges in a regular graph of degree 46 and 8 vertices is	
A) 347 B) 230 C) 184 D) 186	
15) The kind of inference $p := p \lor q$ is called	
A) GeneralizationB) Modus Tollens	
C) Specialization D) Contradiction Rule	
16) The inverse of "if p then q" is	
A) "If q then p"B) "If \sim p then \sim q"	
C) "If \sim q then \sim p"D) \sim p \land q	
17) The kind of inference $p \land q$ \therefore q is called	
A) Generalization B) Modus Tollens	
C) Specialization D) Contradiction Rule	
18) The binary equivalent of octal number 5073is	
A) 101 000 101 011 B) 101 010 111 011	
C) 101 001 011 011 D) 101 000 111 011	

19) Every complete graph on 'n' vertices is an
A) $(n-1)$ -regular graph B) n-regular graph
C) (n + 1)-regular graph D) $\frac{n}{2}$ -regular graph
20) Total degree of a graph G with '6' vertices and '8' edges is
A) 12 B)16 C) 8 D)6
21)A graph that does not have loops as well as parallel edges is called
A)multigraph B)pseudograph C)simple graph D) trivial graph
22) A circuit that includes every vertex of a graph is called
A)Hamiltonian circuit B)Euler circuit
C)simple circuit D) none of these
23) The kind of inference $\sim p \rightarrow c :: p$ is called
A) Generalization B) Modus Tollens
C) Specialization D) Contradiction Rule
24) The base or radix of the octal number system is
A) 2 B) 16 C) 10 D) 8
25) A Null graph has
A) no nodesB) no edges C) no even vertex D) none of these
26) The maximum degree of any vertex in a simple graph with n vertices is
A) $n - 1$ B) $n + 1$ C) $2n - 1$ D) n
27) The complete graph with four vertices has k edges where k is
A) 3 B) 4 C) 5 D) 6
28) Number of circuits in any tree is exactly
A) 1B) 0C) infiniteD) none of these29) A vertex of degree one in any tree is called
A) Internal Vertex B) Leaf C) Forest D) Isolated Vertex

30) Level of root in a	any rooted tree	is		
A) 0	B) 1	C) 2	2	D) 3
31) A tree with 21 ve	ertices has	edges		
A) 22	B) 20	C) 40	D) 21	
32) Total degree of a	tree with 25 v	vertices is		
A) 24	B) 26	C) 48	D) 12	
33) The graph $K_{2,n}$ h	as ed	lges.		
A) 2 <i>n</i> B			D) 3	
34) A 5-regular grap				
A) is a simple		B) i		raph
C) can not be			a tree	-
35) Which of the foll	lowing is not a	proposition	?	
A) Is mathe	matical boring	?		
B) Man landed on t	he sun last yea	r		
C) Diamond is harde	r than graphite	¢		
D) he finished his	work and went	away		
36) The symbols Λ, V	$, \rightarrow \text{and} \leftrightarrow \text{are}$	called		
A) Propositions B	b) connectives	C) stater	nents	D) None of these
37) which of the foll	owing Is logica	ally equivale	nt to $-(-p)$	$p \rightarrow q$)?
A) $p \wedge q$	B) $p \wedge -q$	C)- <i>p</i>	$\wedge q$	D) $-p \wedge -q$
38) Let p be a statem	ent then ' $p \lor$	(~ <i>p</i>) ' is		. •
A) always tau	tology	B) alwa	ys contrad	liction
C) contingenc	У	D) not a	a statemen	t
39) Sum of weights of	of all edges inv	volved in grap	ph is calle	dof graph
A) Total ler	ngth	B) To	otal weigh	t
C)Total deg	gree	D) To	otal distan	ce
40) The law $\sim (p \lor q)$	$) \equiv \sim p \wedge \sim q$	is known as		_·
A) Idempoten	t law		B) De-M	organ's law
C) Associativ	e law		D) Distril	outive Law

Questions for 8 Marks

1. Assume x is Particular real number and determine whether following statements

(a) and (b) are logically Equivalent or not

(a) x < 2 or it is not same case that 1 < x < 3

(b) $x \ge 1$ or either x < 2 or $x \ge 3$

2.Write each of the following statements in symbolic form and determine which pairs arelogically equivalent ,Include truth tables

i) If it walks like a duck and it talks like a duck, then it is a duck.

- ii) Either it does not walk like a duck or it does not talk like a duck, or it is a duck
- iii) If it does not walk like a duck and it does not talk like a duck, then it is not a duck.

3. Define Converse and Inverse of conditional statement and write the converse and inverse of given statement 'If today is New Year's Eve,then tomorrow is January'

4. Define Valid Argument. Test the validity of set of premises and conclusion given below

 $(\sim p \lor q) \to r \,, s \lor \sim q \,, \sim t \,, p \to t \,, (\sim p \land r \,) \to \sim s \stackrel{\cdot}{\ldots} \sim q$

5. Define Valid Argument. Test the validity of following argument using truth table If the sum of the digits of 371,487 is divisible by 3, then 371,487 is divisible by 3.

The sum of the digits of 371,487 is divisible by 3

 \therefore 371,487 is divisible by 3.

6. You are about to leave for school in the morning & discover that you didn't have your glasses, you know the following statements are true:

(a) If I was reading the newspaper in the kitchen, then my glasses are on the kitchen table

(b) If my glasses are on the kitchen table, then I saw them at breakfast

- (c) I did not see my glasses at breakfast.
- (d) Either I was reading the newspaper in the kitchen or in living room
 - (e) If I was reading the newspaper in living room then my glasses are on the coffee table. Where are the glasses ?
- 7. State and prove Hand shaking lemma

8. Define Degree of Vertex and show that number of odd degree vertices in any graph is always even

9. Define 'Euler circuit' and prove that if a graph has an Euler circuit then every vertex of graph has positive even degree

10.If a graph G is connected and the degree of every vertex of G is a positive even integer, then prove that G has an Euler Circuit

11. Define 'Tree' and show that a tree with 'n' vertices has 'n - 1' edges where n is positive integer

12. Define 'Circuit' and prove that If G is any connected graph, C is any circuit in G, and any one of the edges of C is removed from G, then the graph that remains is connected 13.Define 'Tree' and prove that for any positive integer , if G is a Connected graph with n vertices and n - 1 edges, then G is a tree.

14. find the shortest path from vertex 'a' to remaining vertices of graphG given below using Dijkstra's algorithm

15. Define 'Minimum Spanning Tree' Find the minimum spanning tree and its total weight for graph G given below using Kruskal's Algorithm

Questions for 4 Marks

1. Define a) Disjunction of two statements b) Conjunction of two statements

- 2. Prepare truth table for $(p \lor q) \land \sim (p \land q)$
- 3. Prepare truth table for $(p \land q) \land \sim r$

4. Assume x is real number and Use De Morgan's laws to write the negation of $-1 < x \le 4$

5. Define a) Tautology b) Contradiction

6. Determine whether the statements ~ $(p \land q)$ and ~ $p \land ~ q$ are logically equivalent or not

7. Determine whether the statements $p \land (q \lor r)$ and $(p \land q) \lor (p \land r)$ are logically equivalent or not

- 8. Assume x is real number and Use De Morgan's laws to write the negation of -2 < x < 7
- 9. Check whether the statement $(p \land q) \lor [\sim p \lor (p \land \sim q)]$ is Tautology or Contradiction
- 10. Using truth table show that $(p \oplus q) \oplus r \equiv p \oplus (q \oplus r)$
- 11. Write the converse, inverse and contra positive of following statement

'If Howard can swim across the island, then Howard can swim across the lake'

12. Rewrite the following statements as conjunction of two if - then statements

'This Quadratic equation has two distinct real roots if and only if, its discriminant is greater than zero'

13. Rewrite the following sentences in if – then form and explain logical relation between themi) I say what I meanii) I mean what I say

14. Using method of contradiction show that $\sqrt{5}$ is an irrational number

15. Represent given decimal integers into binary notations	i) 55	ii) 287	
--	-------	---------	--

16. Convert given binary number to decimal number i) 110101_2 ii) 1100101_2

17. Evaluate i) $101001_2 + 10011_2$ ii) $101101_2 - 10011_2$

- 18.Convert given Hexadecimal number to decimal number i) $3CF_{16}$ ii) $E0D_{16}$
- 19. Convert given Hexadecimal number to binary number i) $4FA_{16}$ ii) $B53DF8_{16}$

20. Evaluate i) $1001_2 + 1011_2$ ii) $1010100_2 - 10111_2$

21. Define i) Complete Graph ii) Complete Bipartite Graph

22. if G is graph having p vertices of which r vertices have degree 'k' while remaining vertices have degree 'k + 1' then show that r = (k + 1)p - 2q where q is the number of edges in G

23. Check whether the following graphs are isomorphic or not

24. Check whether the following graphs are isomorphic or not

- 25. Draw a graph with 5 vertices having degrees 1, 2, 3, 3, 5 respectively
- 26. Draw i) $K_{4,2}$ ii) K_5
- 27. Write a short note on konigsberg seven bridge problem.
- 28. Define 'Adjacency matrix' for a directed graph and draw a directed graph corresponding

To given adjacency Matrix
$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 2 & 1 & 0 & 0 \end{bmatrix}$$

29. Define 'Adjacency matrix' for aundirected graph and draw a undirected graph

corresponding to given adjacency Matrix	0	1	0	1]
	1	1	2	1
	0	2	0	0
	1	1	0	1

30. Verify Handshaking Lemma For the following graph

