Yashwantrao Chavan College of Science Karad B.Sc. – I Paper I: Mechanics I Question Bank - 2023-2024

Q.1 Select the most correct alternative.

Q.1		cet the most correct a						
1	The scalar product of a vector with itself is equal to							
	a	it's magnitude	b	square of its magnitude	c	zero	d	infinity
2	Moment of inertia of a spherical shell about its diameter							
-	a	$\frac{2}{2}$ MR ²		$\frac{3}{2}$ MR ²	c		d	$\frac{1}{2}$ MR ²
3	Acceleration \vec{a} is aorder derivative of position vector \vec{r} with respect to the parameter time t.							
	a	First	b	second	c	third	d	Fourth
4	The time rate of change of linear momentum is							
	a	Linear acceleration	b	angular acceleration	c	force	d	energy
5	The energy possessed by the body by virtue of its motion is							
U	a			potential energy c		Mechanical	d	total energy
						energy	u	total energy
6	If the frame of reference is changed then							
		the value of		the physical		the conservation		the conservation
	a	physical quantity is	b	laws are	c	laws are not	d	laws are obeyed
		not changed		changed		obeyed		
7	Ma	ss is the measure of	in	linear motion.				
	a	moment of inertia	b	inertia	c	force	d	acceleration
8	Dynamics of a body can be studied in a more simple way by assuming that the whole mass of the body is concentrated at a point called							
	a	geometrical centre	b	centre of gravity	c	centre of mass	d	centre of force
9	Moment of inertia in rotational motion is analogous to thein translational motion.							
	a	Momentum	b	mass	c	force	d	torque
10	The triangle law of vector addition can be used to find the resultant of							
	a	only two vectors				unit vector only		more than two
11	vectors The relation between linear velocity \vec{v} , the radius vector \vec{r} and angular velocity \vec{w} of a							
	par a	ticle is $\vec{v} = \vec{r} X \vec{w}$	b	$\vec{v} = \vec{w} X \vec{r}$	c	$\vec{w} = \vec{v} X \vec{r}$	d	$\vec{w} = \vec{r} X \vec{v}$

12	The total mechanical energy is conserved if the force acting on the system isa a Conservative b conservative c Frictional d Electromagnetic					
13	The energy possessed by the body by virtue of its position d total energy a kinetic energy b potential energy c energy					
14	If magnitude of two $\vec{A} \times \vec{B} = AB$, then the two vectors must be					
	a parallel to each other b antiparallel to each other c coplanar d perpandicucular to each other					
15	If the vector product of two nonzero vectors is zero, the vectors must be					
	a Either parallel or a ntiparallel b perpendicular c angle 45° with d antiparallel each other					
16	Velocity \vec{v} is a order derivative of position vector \vec{r} with respect to the parameter time t.					
	a First b second c third d fourth					
17	If the total force acting on a particle or a system of a particle is zero, then the of the particle or system is conserved.					
	a Linear momentum b $angular$ c kinetic energy d energy momentum c					
18	If the total torque acting on a particle or a system of a particle is zero, then the of the particle or system is conserved.					
	a Linear momentum b angular c kinetic energy d) energy momentum					
19	Just as force produces linear motion,produces rotational motion.					
	a Torque b moment of c angular d angular inertia d angular acceleration					
20	Acceleration of a body rolling down an inclined plane is independent . of the body.					
	a Radius b radius of gyration c mass d inclination θ					

Q.2 Answer the following questions in brief.

- 1. Obtain the expression for the moment of inertia of a solid cylinder about an axispassing through its centre and perpendicular to its own axis.
- 2. State and prove law of conservation of linear momentum for a single particle and system of particles.
- 3. Define vector product or cross product of two vectors. State right hand rule and right handed screw rule about the direction of the resultant vector.
- 4. Show that an instantaneous acceleration of a particle is a derivative of instantaneous velocity of a particle with respect to the time.
- 5. Define first order homogeneous differential equation and discuss variable separation method to obtain its solution.

Q.3 Answer the following questions in short.

- 1 Define scalar or dot product of two vectors. State its characteristics.
- 2 Define moment of inertia and radius of gyration. Explain the physical significance of moment of inertia.
- 3 State and explain the triangle law of vector addition.
- 4 State and explain the law of parallelogram of vector addition.
- 5 Solve, $\frac{dy}{dx} + \frac{x^2y}{x^2} = 0.$
- 6 What is the differential equation? Define order, degree and linearity of a differential equation.
- 7 State and prove work energy theorem.
- 8 Define angular momentum of a particle and find an expression for angular momentum of a rotating body.
- 9 Define torque and obtain an expression for it in terms of angular momentum for a particle rotating about a point.
- 10 Find an expression for kinetic energy of a body rotating about an axis.