Yashwantrao Chavan College of Science Karad B.Sc II : Semester IV : Paper VIII
 Subject: Wave and Optics II
 Question Bank

Q.1) Select the most correct alternative. (1 Mark each)

(i)points correspond to unit angular magnification.
a) cardinal
b) principal
c) Nodal
d) focal
(ii) A ray passing through the first focal point emerges as a....
a) Ray parallel to the principal axis
b) Ray parallel to the incident ray
c) Ray passing through the second focal point
d) None of the above
(iii) In general, the relation between first and second focal lengths is
a) $\frac{f_{1}}{f_{2}}=-\frac{\mu_{1}}{\mu_{2}}$
b) $\frac{f_{1}}{f_{2}}=-\frac{\mu_{2}}{\mu_{1}}$
c) $\frac{f_{1}}{f_{2}}=\frac{\mu_{1}}{\mu_{2}}$
d) $\frac{f_{1}}{f_{2}}=\frac{\mu_{2}}{\mu_{1}}$
(iv) For a coaxial lens system, the relation between linear (m), axial (mL), and angular (α) magnifications is
a) $\alpha=m \cdot m L$
b) $m L=m \cdot \alpha$
c) $m=\alpha \cdot m L$
d) None of the above
(v) According to Rayleigh's criterion, the resolving power of an optical instrument is defined by
a) $\frac{\lambda^{2}}{d \lambda}$
b) $\frac{d \lambda}{\lambda}$
c) $\lambda \cdot d \lambda$
d) $\frac{\lambda}{d \lambda}$
(vi) In a telescope and microscope, the image formation is due to...
a) Refraction
b) Diffraction
c) Refraction and diffraction
d) Reflection
(vii) According to the modified Rayleigh's criterion for resolution, the intensity at the dip should be \qquad times the intensity at either maximum,
a) $\frac{8}{\pi^{2}}$
b) $\frac{\pi^{2}}{8}$
c) $\frac{4}{\pi^{2}}$
d) $\frac{\pi^{2}}{4}$
(viii) The spectral resolving power of a prism varies with the base length (t) as
a) $\mathrm{RP} \propto t^{2}$
b) $\mathrm{RP} \propto t$
c) $\mathrm{RP} \propto \frac{1}{t}$
d) $\mathrm{RP} \propto \frac{1}{t^{2}}$
(ix) The ordinary and extraordinary rays produced in a doubly refracting material are
a) Plane polarised in mutually perpendicular directions
b) Plane polarised parallel to each other
c) Unpolarised
d) Generally elliptically polarised
(x) A negative crystal is one for which.
a) $\mu_{E}>\mu_{o}$
b) $\mu_{E}<\mu_{o}$
c) $\mu_{E}=\mu_{o}$
d) μ_{E} is negative
(xi) Nicol prism is made up of.....
a) Natural calcite crystal
b) Properly cut natural calcite crystal
c) Natural quartz crystal
d) Properly cut quartz crystal
(xii) Elliptically polarised light is produced by using..
a) A polariser
b) Quarter wave plate
c) A polariser and a quarter plate
d) A half wave plate and polariser
(xiii) For better contrast of the interference fringes, the amplitudes of two waves must be
a) Equal
b) Unequal
c) Zero
d) Maximum
(xiv) In a wave getting reflected from a denser medium, the additional phase difference introduced is
a) 0
b) $\frac{\pi}{2}$
c) π
d) 2π
(xv) A path difference of $\lambda / 2$ is equivalent to a phase difference of.
a) $\pi / 4$
b) $\pi / 2$
c) π
d) 2π
(xvi) The fringes obtained in a wedge-shaped thin film are of..
a) Increasing thickness
b) Decreasing thickness
c) Varying thickness
d) Equal thickness
(xvii) Corresponding to a wavelength (λ), the focal length (f) of a zone plate is a.......
a) $f \propto \lambda$
b) $f \propto \frac{1}{\lambda}$
c) $f=\lambda$
d) $f=5 \lambda$
(xviii) In Fresnel diffraction with respect to the obstacle center of diffraction.
a) Both source and screen are at finite distance
b) Both source and screen are at infinite distance
c) Source and Screen are very close to the obstacle
d) Source and screen are at very large distance from obstacle
(xix) In a plane transmission grating with white light as the source
a) The central fringe is red
b) The central fringe is yellow
c) The central fringe is violet
d) The central fringe is white
(xx) In a zone plate, the radius of the nth Zone is.......
a) $n b \lambda$
b) $(2 n+1) b \lambda$
c) $n b \lambda$
d) $(2 n+1) b \lambda$

Q.2) Answer the following questions in brief

(i) Define linear, axial, and angular magnification of a lens system and hence obtain a relationship between them.
(ii) Explain Rayleigh's criterion for the limit of resolution with their cases.
(iii) Discuss the conditions to obtain interference due to the reflection of light from a thin, parallel film.
(iv) Obtain the conditions for interference bands (bright and dark) due to light reflected from a wedge-shaped film.
(v) Explain Fresnel diffraction at a straight edge and show how the intensity is distributed on the screen after diffraction at a straight edge.

Q.3) Answer the following questions in short

(i) Derive Newton's formula for a lens system.
(ii) Derive the expression for the resolving power of a prism.
(iii) Write the construction and working of a Nicol prism.
(iv) Calculate the thickness of a quarter-wave plate for light of wavelength 5890 . The refractive index for ordinary light is 1.55 and that for extraordinary light is 1.50 .
(v) State the conditions to obtain steady interference bands.

