B.Sc. (Part-II) (Semester-IV) (CBCS) Examination, June-2022

MATHEMATICS

DSC-5D PAPER-VII (Real Analysis-II)

Subject Code: 78907

Question Bank

••••••••••••

Multiple choice Questions

1.	If $C = \{C_n\} = \{\sqrt{n}\}\ $ and $N = \{n_i\} = \{i^4\}, i \in N, \text{ then } C \circ N =$			
	a) $\{i\}$	b) $\{i^2\}$	c) $\{i^3\}$	d) $\{i^4\}$
2.	If $0 < x < 1$, then the	sequence $\{x^n\}_{n=1}^{\infty}$		
	a) converges to 0		c) diverges to ∞	
	b) converges to 1		d) diverges to $-\infty$	
3.	The sequence $\left\{\frac{n}{n+1}\right\}$	$\left.\right\}_{n=1}^{\infty} \text{ is } \dots$		
	a) non-decreasing		c) bounded	
	b) monotonic		d) all the above	
4.	The sequence $\{(-1)^n\}$	$\begin{cases} \infty \\ n=1 \end{cases}$ is		
	a) not bounded above	ve	c) not bounded below	•
	c) monotonic		d) not monotonic	
5.	$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n-1} = \dots$			
	a) <i>e</i>	b) e^2	c) e^3	d) \sqrt{e}
6.	$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^{n\pm 50} = \dots$			
	a) <i>e</i>	b) e^2	c) e^3	d) \sqrt{e}
7.	Every convergent sec	quence is		
	a) bounded above		c) bounded	
	b) bounded below		d) none of these	
8.	-	uence which is bound		
	a) divergent		c) convergent	
	b) oscillatory		d) none of these	

9. A non-decreasing sequence which is not bounded above				
a) converges to 0	c) diverges to ∞			
b) converges to 1	d) diverges to –	∞		
10. If $\{S_n\}_{n=1}^{\infty}$ is a sequence of non-neg	gative real numbers and \lim_{n-1}	$\prod_{n \to \infty} S_n = L, \text{ then } \dots$		
a) $L = 0$ b) $L = 1$	c) $L \leq 0$	d) $L \ge 0$		
11. If $\{S_n\} = \{(-1)^n\}_{n=1}^{\infty}$, then $\lim_{n \to \infty} Sup$	$S_n = \dots$			
a) 0 b) 1	c) -1	d) 2		
12. If $\{S_n\} = \{(-1)^n\}_{n=1}^{\infty}$, then $\lim_{n \to \infty} Inf$	$S_n = \dots$			
a) 0 b) 1	c) -1	d) 2		
13. If $\{S_n\} = \{1, 2, 3, 4, 1, 2, 3, 4, \dots\}$, then]	$\lim_{n\to\infty} Sup S_n = \dots \text{ and } \lim_{n\to\infty}$	Inf $S_n = \dots$		
a) 4, 1 b) 1, 4	c) 4, 4	d) 1, 1		
14. If $\{S_n\}_{n=1}^{\infty}$ is not bounded above, th	$ \operatorname{lim}_{n\to\infty} \operatorname{Sup} S_n = \dots $			
a) 1 b) -1	c) ∞	d) −∞		
15. The sequence $\{S_n\} = \{1,0,1,0,1,0,\dots\}$	} is (C, 1) summable to			
a) 1 b) ½	c) 2	d) 0		
16. A sequence $\{S_n\} = \{(-1)^n\}$ is $(C, 1)$) summable to			
a) 0 b) 1	c) 2	d) -2		
17. A sequence $\{S_n\}_{n=1}^{\infty} = \{1\}$ is $(C, 1)$ s	summable to			
a) 0 b) 1	c) -1	d) 2		
18. The sequence $\{a_n\}_{n=1}^{\infty}$ where, $a_n = \frac{n^2 + 1}{2n^2 + 5}$, converges to				
a) 1/5 b) ½	c) 3/2	d) 1		
19. A lower bound of the sequence $\{2 + n^2\}_{n=1}^{\infty}$ is				
a) 1 b) 4	c) e	d) do not exists		
20. The sequence $\{1,1,1,1,\}$ is				
a) (C, 1) summable	c) not (C, 1) sum	mable		
b) divergent	d) none of these			
21. The sequence $\{(-1)^n n\}_{n=1}^{\infty}$ is				
a) bounded above	c) bounded above as well	ll as bounded below		
b) bounded below	d) neither bounded abov	e nor bounded below		
22. The supremum of the set $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\right\}$ is				
a) 0 b) 1	c) ½	d) 1/4		

c) cannot be decided

a) convergent

42. The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if				
a) $p < 1$		c) $p \le 1$	d) $p > 1$	
43. The geometric serie	43. The geometric series $\sum_{n=1}^{\infty} x^{n-1}$ is convergent if			
,		c) $x \neq 0$	d) $x = 1$	
44. The series $\sum_{n=1}^{\infty} \frac{1}{n}$ is				
-	b) divergent	c) oscillatory	d) none of these	
45. The series $\sum_{n=1}^{\infty} \frac{1}{n!}$ is				
a) convergent		c) oscillatory		
46. If $\sum_{n=1}^{\infty} a_n$ is a series	of positive terms and]	$\lim_{n\to\infty} \sqrt[n]{a_n} = l$, then the	series is convergent if	
a) $l > 0$	b) $l = 1$	c) $l > 1$	d) $l < 1$	
47. A series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if is convergent.				
a) $\left\{\sum_{k=1}^{\infty} a_k\right\}_{n=1}^{\infty}$	$b) \left\{ \sum_{k=1}^{\infty} a_k^2 \right\}_{n=1}^{\infty}$	c) $\{a_k\}_{k=1}^{\infty}$	$\mathrm{d})\ \left\{\left a_{n}\right \right\}_{n=1}^{\infty}$	
48. If $\sum u_n$ and $\sum v_n$ are two positive term series that $\lim_{n\to\infty} \frac{u_n}{v_n} = l$ is non-zero finite				
number, then				
a) if $\sum u_n$ converges then $\sum v_n$ converges				
b) if $\sum v_n$ converges then $\sum u_n$ converges				
c) if $\sum u_n$ diverges then $\sum v_n$ converges				
d) both series converges or diverges together				
49. The sum of the serie	es $\sum_{n=0}^{\infty} \frac{1}{n!}$ is			
a) e	b) 0	c) 1	d) -1	
50. The series 0.6+0.06		a) aamvam===+ t= 1/2		
a) convergent to 0.b) convergent to 2.		c) convergent to 1/3d) divergent		
b) convergent to 2/	<i>5</i>	a, arvergent		

Long Answer Questions (10 Mark Questions)

- 1. Define convergent sequence and prove that a non-decreasing sequence which is bounded above is convergent.
- 2. Define convergent sequence and prove that a non-increasing sequence which is bounded below is convergent.
- 3. Prove that the sequence $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}_{n=1}^{\infty}$ is convergent.
- 4. If $\{s_n\}_{n=1}^{\infty}$ is sequence of real numbers which converges to L then prove that $\{s_n^2\}_{n=1}^{\infty}$ converges to L^2 .
- 5. If 0 < x < 1, then prove that the sequence $\{x^n\}_{n=1}^{\infty}$ converges to zero.
- 6. If $\{s_n\}_{n=1}^{\infty}$ is sequence of real numbers then prove that $\lim_{n\to\infty} \sup s_n = \lim_{n\to\infty} s_n$.
- 7. If $\{s_n\}_{n=1}^{\infty}$ and $\{t_n\}_{n=1}^{\infty}$ are bounded sequences of real numbers then prove that
 - i) $\lim_{n\to\infty} \sup (s_n + t_n) \le \lim_{n\to\infty} \sup s_n + \lim_{n\to\infty} \sup t_n$ and
 - ii) $\lim_{n\to\infty} \inf (s_n + t_n) \ge \lim_{n\to\infty} \inf s_n + \lim_{n\to\infty} \inf t_n$
- 8. If $\{s_n\}_{n=1}^{\infty}$ is Cauchy sequence of real numbers then prove that $\{s_n\}_{n=1}^{\infty}$ is convergent.
- 9. Prove that a positive term geometric series $\sum_{n=0}^{\infty} r^n$ converges for r < 1 and diverges to $+\infty$ for $r \ge 1$.
- 10. Prove that a positive term series $\sum \frac{1}{n^p}$ is convergent for p > 1 and diverges for $p \le 1$.
- 11. If the alternating series $u_1 u_2 + u_3 u_4 + ... (u_n > 0 \forall n)$ is such that
 - i) $u_{n+1} \le u_n \ \forall n$ and ii) $\lim_{n \to \infty} u_n = 0$. then prove that the series convergent.
- 12. State D'Alembert's ratio test. Hence test the convergence of $x + \frac{x^3}{3} + \frac{x^5}{5} + \dots$
- 13. State Raabe's test. Hence discuss the convergence of

$$\frac{(1!)^2}{2!}x + \frac{(2!)^2}{4!}x^2 + \frac{(3!)^2}{6!}x^3 + \dots \quad (x > 0)$$

- 14. State Cauchy's root test. Hence test the convergence of the series $\sum_{n=1}^{\infty} \left(\frac{n}{n+2}\right)^{n^2}$.
- 15. Define absolute and conditional convergence. Hence show that the series

$$x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$
 converges absolutely for all values of x.

Short Answer Questions (5 mark questions)

- 1. Find the limit of the sequence 0.6, 0.66, 0.666,
- 2. Find the limit of the sequence $\{s_n\}_{n=1}^{\infty}$ where $s_n = \sqrt[3]{5}$, $s_{n+1} = \sqrt[3]{5 \cdot s_n}$.
- 3. Find the limit superior and inferior of the sequence 10^{100} , 1, -1, 1, -1, ...
- 4. Find the limit superior and inferior of the sequence 1, 2, 3, 4, 1, 2, 3, 4,....
- 5. Find the limit superior and inferior of the sequence $\left\{\sin\left(\frac{n\pi}{2}\right)\right\}_{n=1}^{\infty}$
- 6. Prove that sequence $\{s_n\} = (-1)^n$, $(n \in I)$ is (C, 1) summable.
- 7. Prove that the sequence 1, 0, 1, 0, 1, 0, is (C, 1) summable.
- 8. Discuss the (C, 1) summability of 1, -1, 2, -2, 3, -3,
- 9. Prove that the sequence $s_n = 1, 1, 1, 1, \dots$ is (C, 1) summable.
- 10. Discuss the (C, 1) summability of 1, 2, 3,
- 11. Show that the sequence $\{s_n\}$, where $s_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$, $\forall n \in \mathbb{N}$ is convergent.
- 12. Show that the sequence $\{s_n\}$, where $s_n = \frac{1}{1!} + \frac{1}{2!} + ... + \frac{1}{n!}, \forall n \in \mathbb{N}$ is convergent.
- 13. Show that the sequence $\{s_n\}$ defined by the recursion formula $s_{n+1} = \sqrt{3s_n}$, $s_1 = 1$ converges to 3.
- 14. Find the limit superior and inferior of the sequence $s_n = 1 + (-1)^n$, $n \in \mathbb{N}$
- 15. Find the limit superior and inferior of the sequence $s_n = \sin\left(\frac{n\pi}{3}\right), n \in \mathbb{N}$
- 16. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{(3n+1)(3n+4)}$.
- 17. Find sum of the series $\sum_{n=1}^{\infty} \frac{1}{16n^2 + 8n 3}$.
- 18. Find the sum of the series $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + ...$
- 19. Test the convergence of the series and find the sum if the series convergent 0.3 + 0.03 + 0.003 + ...
- 20. Discuss the convergence of the series for $x = \frac{3}{4}$:

$$1+2x+x^2+2x^3+x^4+2x^5+...$$

- 21. Discuss the convergence of the series $\frac{2}{3} \frac{4}{9} + \frac{8}{27} \frac{16}{81} + \dots$
- 22. Test the convergence of the series $\frac{1}{1 \cdot 2 \cdot 3} + \frac{3}{2 \cdot 3 \cdot 4} + \frac{5}{3 \cdot 4 \cdot 5} + \dots$
- 23. Show that the series $\frac{1 \cdot 2}{3^2 \cdot 4^2} + \frac{3 \cdot 4}{5^2 \cdot 6^2} + \frac{5 \cdot 6}{7^2 \cdot 8^2} + \dots$ is convergent.
- 24. Investigate the behavior of the series $\sum \sin \frac{1}{n}$
- 25. Discuss the convergence of $\sum \frac{8+5^n}{3+4^n}$
- 26. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{3^n}{n^3}$
- 27. Test the convergence of the series $\sum \frac{3^n}{n^3+3}$
- 28. Test the convergence of $\frac{3}{7} + \frac{3 \cdot 6}{7 \cdot 10} + \frac{3 \cdot 6 \cdot 9}{7 \cdot 10 \cdot 13} + \dots$
- 29. Test the convergence of $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$
- 30. Show that $\sum \frac{\sin n\alpha}{n^2}$ is absolutely convergent.

B.Sc. (Part-II) (Semester-IV) (CBCS) Examination, June-2022

MATHEMATICS

DSC-6D PAPER-VIII (Algebra-II)

Subject Code: 78907

Question Bank

Multiple choice Questions 1. If H is a subgroup of a finite group G and o(H)=3, o(G)=36 then [G:H]=....a) 3 b) 12 c) 4 d) 9 2. The theorem that for any integer a and prime $p, a^p \equiv a \pmod{p}$ is called a) Fermat's theorem c) Sylow's first theorem b) Euler's theorem d) Lagrange's theorem 3. If G is a finite group and H is a subgroup of G then $i_G(H) =$ d) $\frac{o(G)}{o(H)}$ b) *o*(*G*) c) o(H)4. If G is a finite group and $a \in G$, then a) $o(G) \mid o(a)$ b) o(a) > o(G)c) $o(a) \mid o(G)$ d) none of these 5. If H is a subgroup of a finite group G then a) [G:H] | o(H)b) [G:H] | o(G)c) $o(G) \mid [G:H]$ d) o(H) | [G:H]6. The theorem that "If a is any integer relatively to positive integer n" then $a^{\phi(n)} \equiv 1 \pmod{n}$, where ϕ is the Euler ϕ -function is called a) Lagrange's theorem c) Euler's theorem b) Fermat's theorem d) Sylow's theorem 7. If His a subgroup of a finite group G, then index of H in G is ... b) $\frac{o(G)}{o(H)}$ c) $\frac{o(H)}{o(G)}$ a) o(H)d) o(G)8. A subgroup H of a group G is normal if and only if for all $g \in G$.

c) $gHg^{-1} = H$ d) $Hg^{-1} = gH$

a) $Hg^{-1} = H$

d) None of these.

b) gH = H9. A subgroup H of a group G is normal if and only if

b) Every right coset of H in G is a left coset of H in G.

a) Every right coset of H in G is greater than a left coset of H in G.

c) Every left coset of H in G is greater than a right coset of H in G.

10 From subsection of chalier security			
10. Every subgroup of abelian group is	\ '.1 1 1'		
a) a normal subgroup	c) neither abelian nor normal		
b) abelian but not normal	d) none of these		
11. A subgroup H of a group G is normal in G			
a) $(Ha/Hb) = Hab$	c) $(Ha)(Hb) = H_{a+b}$		
b) $Ha + Hb = Hab$	d) $(Ha)(Hb) = Hab$		
12. Let H be a subgroup and K be normal subgroup	roup of the group G, then is normal in H.		
a) $H \cup K$ b) $H \cap K$	c) H+K d) none of these		
13. If G is a group and $a \in G$, then the subset	$\{x \in G \mid xa = ax\}$ is called		
a) normalizer of a in G	c) right coset of a in G		
b) center of G	d) none of these		
14. If G is a group then $\{x \in G \mid xg = gx, \text{ for all } a\}$	$\{l \mid g \in G\}$ is called		
a) normalizer of a in G	c) right coset of a in G		
b) center of G	d) none of these		
15. If G is a finite group and N is a normal subg	group of G then $g(G)$ is		
13. If G is a finite group and N is a normal subj	group of G then $o(\frac{1}{N})$ is		
o(G) $o(N)$			
a) $\frac{o(G)}{o(N)}$ b) $\frac{o(N)}{o(G)}$	c) $2 \cdot o(G)$ d) $2 \cdot o(H)$		
16. The factor group of an abelian group is			
a) cyclic	c) abelian		
b) neither abelian nor cyclic	d) none of these		
17. The factor group of a cyclic group			
a) cyclic	c) abelian		
b) neither abelian nor cyclic	d) none of these		
18. If G is finite group and H is subgroup of G	then index of H in G is		
a) $\frac{o(H)}{o(G)}$ b) $o(G)$	c) $o(H)$ d) $\frac{o(G)}{o(H)}$		
19. If H is a subgroup of a finite group G and o	rder of H and G are respectively m and n then		
a) <i>m</i> <i>n</i>	c) $m = kn, k \in \mathbb{Z}$		
b) <i>n</i> <i>m</i>	d) m does not divides n		
20. Let H be a subgroup of finite group G, then	for any $x \in G$		
a) $o(x^{-1}Hx) = o(H)$	c) $(x^{-1}Hx) = H$		
b) $o(Hx) = o(xH)$	d) $Hx = xH$		
21. If o(G)=30 then group G may have subgroup of order			
a) 4 b) 5	c) 7 d) 8		
22. Any two right cosets of a subgroup H of a g			
a) either disjoint or identical	c) always identical		

b) always disjoint	d) left cosets		
23. A group having no non-trivial normal	l subgroups then group (G is known as	
a) alternating group	c) conjugate gro	up	
b) simple group	d) symmetric gro	oup	
24. For Euler's function ϕ if n=8 then ϕ ($(n) = \dots$		
a) 4 b) 6	c) 7	d) 8	
25. If p is a prime the $\phi(p) =$			
a) p b) p-1	c) p+1	d) $p/(p-1)$	
26. Order of Group is equal to order of	of its generator.		
a) simple b) abelian	c) cyclic	d) commutative	
27. The remainder of 3^{12} when divided b	y 7 is		
a) 3 b) 1	c) 0	d) 7	
28. The remainder of 2^{14} when divided b	y 7 is		
a) 4 b) 1	c) 0	d) 7	
29. The remainder of 7^{17} when divided b	ov 17 is	,	
a) 17 b) 1	c) 0	d) 7	
30. Let $f: G \rightarrow G'$ be a homomorphism	of a group G into G' wit	th kernel K. Then f is one-	
one iff			
a) $K = \phi$ b) $K = \{e\}$	c) $K = G$	d) $K = G'$	
31. A homomorphism f from a group G o	onto the group G' is an is	somorphism iff kerf=	
a) ϕ b) $\{e\}$		d) $K = G'$	
32. Every homomorphic image of a group	p G is isomorphic to	,	
a) a permutation group	c) a quotient gro	up	
b) a cyclic group	d) simple group		
33. Order of the permutation (1 2 4 5) (3			
a) 2 b) 3	c) 4	d) 6	
34. If $f: G \rightarrow G'$ be an isomorphism and	a be any element of G t	hen	
	a de any element of de		
a) $o(G)=o(a)$ b) $o[f(a)]=o(a)$			
	c) o(G')=o(a) d) $o(a)=o(G/G')$	
 a) o(G)=o(a) b) o[f(a)]=o(a) 35. Any infinite cyclic group is isomorph a) the group R of real numbers 	c) o(G')=o(a) d	o(a)=o(G/G')	
35. Any infinite cyclic group is isomorph	c) o(G')=o(a) d ic to c) the group Z of	o(a)=o(G/G')	
35. Any infinite cyclic group is isomorpha) the group R of real numbersb) the group Q of rational numbers	c) o(G')=o(a) dy ic to c) the group Z of d) the set R ⁺ of p	o(a)=o(G/G') fintegers	
35. Any infinite cyclic group is isomorph a) the group R of real numbers	c) o(G')=o(a) dy ic to c) the group Z of d) the set R ⁺ of p	o(a)=o(G/G') fintegers	
35. Any infinite cyclic group is isomorpha) the group R of real numbersb) the group Q of rational numbers36. Identity permutation is always Per	c) o(G')=o(a) dy ic to c) the group Z of d) the set R ⁺ of p rmutation. c) negative	o(a)=o(G/G') f integers ositive rational numbers.	
 35. Any infinite cyclic group is isomorph a) the group R of real numbers b) the group Q of rational numbers 36. Identity permutation is always Per a) odd b) positive 	c) o(G')=o(a) dy ic to c) the group Z of d) the set R ⁺ of p rmutation. c) negative	o o(a)=o(G/G') f integers ositive rational numbers. d) even	
 35. Any infinite cyclic group is isomorph a) the group R of real numbers b) the group Q of rational numbers 36. Identity permutation is always Per a) odd b) positive 37. The inverse of an even permutation is 	c) o(G')=o(a) dy ic to c) the group Z of d) the set R ⁺ of p rmutation. c) negative	o o(a)=o(G/G') f integers ositive rational numbers. d) even	
 35. Any infinite cyclic group is isomorph a) the group R of real numbers b) the group Q of rational numbers 36. Identity permutation is always Per a) odd b) positive 37. The inverse of an even permutation is a) even permutation 	c) o(G')=o(a) d' d) the group Z of d) the set R ⁺ of p rmutation. c) negative s c) odd permutati d) cycle	o o(a)=o(G/G') f integers ositive rational numbers. d) even	
 35. Any infinite cyclic group is isomorph a) the group R of real numbers b) the group Q of rational numbers 36. Identity permutation is always Per a) odd b) positive 37. The inverse of an even permutation is a) even permutation b) transposition 	c) o(G')=o(a) d' d) the group Z of d) the set R ⁺ of p rmutation. c) negative s c) odd permutati d) cycle	o o(a)=o(G/G') f integers positive rational numbers. d) even	

39.	Every finite group is	isomorphic to		
	a) normal group		c) cyclic group	
	b) quotient group		d) permutation group	
40.	0. The order of symmetric group S_3 is			
	a) 3	b) 3 ²	c) 6	d) 1
41.	The symmetric group	S_3 is		
	a) finite and abelian		c) finite and non-abel	ian
	b) infinite and abelia	an	d) infinite and non-ab	elian
42.	Every finite group is	isomorphic to permuta	tion group is	
	a) true		c) either true or false	
	b) false		d) neither true nor fal	se
43.	"Every finite group C	G is isomorphic to a per	mutation group" is the	statement of
	a) Cauchy's theorem	n	c) Leibnitz's theorem	
	b) Euler's theorem		d) Cayley's theorem	
44.	A one-one onto mapp	$going f: S \to S \text{ is calle}$	d	
	a) isomorphism		c) monomorphism	
	b) function		d) permutation	
45.	One-one homomorph	nism is called		
	a) isomorphism		c) epimorphism	
	b) monomorphism		d) endomorphism	
46.	46. Let R be a ring. An element $0 \neq a \in R$ is called a zero divisor if there exists an element			
	$0 \neq b \in R$ such that.			
	a) $ba \neq 0$	b) $ba = 0$	c) $ab = a$	d) $ba = b$
47.	47. A ring R is called a, if $x^2 = x$ for all $x \in R$.			
	a) Ring with unity	b) division ring	c) Boolean ring	d) field
48.	Any ring can be imbe	edded into		
	a) Ring with unity	b) ring without unity	c) ring without zero	d) ring with zero
	divisor			
49.	An element x in a riv	ng R is called nilpoten	t if	
	a) $x^n = x$	b) $x^{n} = 0$	c) $x^n = e$	d) $x^{n} = 1$
50.	An element e in a rin	$ng R such that e^2 = e$	is known as	
	a) Identity	b) nilpotent	c) idempotent	d) unity

Long Answer Questions (10 Mark Questions)

- 1) If H is a subgroup of a finite group G then prove that o(H) divides o(G). Is converse true?
- 2) Prove that "A subgroup H of a group G is normal in G if and only if the product of any two right (or left) cosets H in G is again a right (or left) coset of H in G."
- 3) Define centre of group G and prove that centre Z(G) of a group G is a normal subgroup of G.
- 4) Define quotient group $\frac{G}{H}$ containing all cosets of the form H_a and show that $\frac{G}{H}$ is a group under the binary operation H_a . $H_{b=}$ H_{ab} where H is a normal subgroup of group G.
- 5)If H and K be two subgroups of a group G then define nonempty subset HK and prove that HK is a subgroup of G if and only if HK = KH.
- 6) If $f: G \to G^{/}$ is an onto homomorphism with K = Ker f, then show that $\frac{G}{K} \cong G^{/}$.
- 7)Define Kernel of homomorphism and prove that if $f: G \to G^{/}$ is a homomorphism, then Ker f is a normal subgroup of G.
- 8)State fundamental theorem of group homomorphism and using this prove that any finite cyclic group of order n is isomorphic to the quotient group $\frac{Z}{N}$, where (Z, +) is the group of integers and N = (n).
- 9) Show that the set S_n of all permutations of degree n defined on a non-empty finite set S of n elements is a finite non-abelian group of order n! under permutation multiplication.
- 10)Prove that, Every finite group G is isomorphic to a permutation group.
- 11) Prove that any finite cyclic group of order n is isomorphic to additive group of integers modulo n.
- 12) if $f: G \to G^{/}$ be an onto homomorphism from group G to $G^{/\cdot}$ Let H be a subgroup of G and $H^{/}$ be a subgroup of $G^{/}$. Then prove that (i) f(H) is a subgroup of $G^{/}$ (ii) $f^{-1}(H^{/})$ is a subgroup of G containing $K = \operatorname{Ker} f$.
- 13)Define ring, commutative ring and show that the set Z $_7 = \{0, 1, 2, 3, 4, 5, 6\}$ forms a commutative ring with unity under addition and multiplication modulo 7.
- 14) Define subring of a ring R and prove that, a non-empty subset S of a ring R is a subring of R if and only if $a, b \in S \Rightarrow ab, a-b \in S$.
- 15) Define right ideal, left ideal, ideal of a ring R and show that intersection of two ideals of a ring R is again an ideal of R.

Questions for 5 Marks

- 1) If G is a finite group and $a \in G$, then show that o(a) divides o(G).
- 2) If G is a finite group of order n then prove that for all $a \in G$, $a^n = e$, where e is the identity element of G.
- 3) State and prove Fermat's theorem.
- 4) Define Euler's ϕ function and find $\phi(8)$.
- 5) Using Fermat's theorem compute the remainder of 2^{35} when divided by 7.
- 6) Using Fermat's theorem compute the remainder of 3^{31} when divided by 7.
- 7) Prove that a group H of a group G is normal if and only if every right coset of H in G is a left coset of H in G.
- 8) Prove that every sub group of an abelian group is a normal subgroup.
- 9) If G is a group and N, M are two normal subgroups of G then show that $N \cap M$ is also normal subgroup of G.
- 10)Show that if N and M are two normal subgroups of a group G then NM is also normal subgroup of G.
- 11) Prove that factor group of a cyclic group is cyclic.
- 12) Prove that factor group of an abelian group is abelian.
- 13) If N is normal subgroup of a group G and M is a sub group of G then prove that NM is sub group of G.
- 14) Let G = $\{0, 1, 2, 3, 4, 5\}$ and H = $\{0, 3\}$. Then find quotient group $\frac{G}{H}$.
- 15) Let f be a mapping from (Z, +), the group of integers to the group $G = \{1, -1\}$ under multiplication defined as f(x) = 1, if x is even and f(x) = -1, if x is odd. Then show that f is a homomorphism.

16) Find fg and gf if
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 4 & 3 & 8 & 6 & 7 & 1 \end{pmatrix}$$
 and $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 6 & 5 & 1 & 8 & 3 & 2 & 4 \end{pmatrix}$

17) Find inverse of permutation

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$$
 and show that $f f^{-1} = 1$

- 18) Let $f = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ and $g = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ be two permutations of degree 3. Show that $fg \neq gf$
- 19)Let $S = \{1, 2, 3\}$. Then write the set P_3 of all permutations of degree 3.
- 20)If $f: G \to G'$ is a homomorphism then show that f(e) = e', where e and e' are the identity elements of groups G and G' respectively.
- 21) If $f: G \to G'$ is a homomorphism then show that range of f is a subgroup of G'.
- 22) If a, b are any elements of a ring R, Prove that a.(-b) = (-b).a = -ab
- 23) If a, b are any elements of a ring R, Prove that (-a).(-b) = a.b
- 24) Show that multiplicative identity in a ring R if exists then it is unique.
- 25) Define zero-divisor in a ring R and find zero divisor in a ring (Z $_6$, \bigoplus $_6$, \bigodot _6)
- 26) Show that the set of numbers of the form $a+b\sqrt{2}$, with a and b as rational numbers with usual addition and multiplication is a field.
- 27) Show that the set N of all 2×2 matrices of the form $\begin{bmatrix} a & 0 \\ b & 0 \end{bmatrix}$ for a, b integers forms a left ideal in the ring R of all 2×2 matrices with elements as integers.
- 28) Show that the set N of all 2×2 matrices of the form $\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$ for a, b integers forms a right ideal in the ring R of all 2×2 matrices with elements as integers.
- 29) Let R be the ring of integers. Let m be any fixed integer and let S be any subset of R such that $S = \{..., -3m, -2m, -m, 0, m, 2m, 3m, ...\}$. Then show that S is a subring of R.
- 30) Show that the set of matrices $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ is a subring of the ring of 2×2 matrices with integral elements.