Yashwantrao Chavan College of Science, Karad Department of Computer Science Question Bank,2023-2024

Subject: Mathematics Paper No- IV GEC-206 Calculus

- 1. State and prove that Lagrange's Mean value theorem.
- 2. State and prove that Rolle's theorem.
- 3. State and prove that Cauchy's Mean value theorem.
- 4. State and prove that Leibnitz's theorem.
- 5. State Maclaurin's theorem with Cauchy's remainder form's also find the series expansion cosx
- 6. State Rolle's theorem and verify Rolle's theorem for the function. $f(x) = x^2 8x + 15$ $x \in [3,5]$
- 7. State Rolle's theorem and verify Rolle's theorem for the function. $f(x) = 2x^3 x^2 4x 2$ $x \in [\sqrt{2}, \sqrt{-2}]$
- 8. State Rolle's theorem and verify Rolle's theorem for the function. $f(x) = x^2 6x + 4$ $x \in [2,4]$
- 9. State Rolle's theorem and verify Rolle's theorem for the function. $f(x) = x^2$ $x \in [-1,1]$
- 10. State Rolle's theorem and If $f(x) = (x 2) \log x$ show that the equation $x \log x = 2 x$ is satisfied by at least one value of x lie both 1 and 2.

- 11. State Rolle's theorem and verify Rolle's theorem for the function. $f(x) = \log \frac{x^{2+6}}{5x}$ $x \in [2,3]$
- 12. State Lagrange's mean value theorem and verify mean value theorem for function $f(x) = x^2 4x 3$ in the interval [a, b] Where a = 1, b = 4
- 13. State Lagrange's mean value theorem and verify mean value theorem for function $f(x) = e^x$ in the interval [0,1]
- 14. State Lagrange's mean value theorem and verify mean value theorem for function $f(x) = x^2 2x$ in the interval [-1,3]
- 15. State Lagrange's mean value theorem and verify mean value theorem for function $f(x) = 2x^3 12x^2 + 24x + 24 \text{ in the interval } [-1,3]$
- 16. State Lagrange's mean value theorem and verify mean value theorem for function f(x) = x(x+1)(x-1) in the interval [0,2]
- 17. State Lagrange's mean value theorem and verify mean value theorem for function f(x) = (x-1)(x-2)(x-3) in the interval [0,4]
- 18. Verify Cauchy's mean value theorem for the function $f(x) = \frac{1}{x^2}$ and $g(x) = \frac{1}{x}$ in [a, b], a > 0 show that the point c is harmonic mean of a < b
- 19. If the Cauchy's mean value theorem we write $f(x) = e^x$ and $g(x) = e^{-x}$ show that c is the arithmetic mean between a and b.
- 20. Verify Cauchy's mean value theorem for the function for $f(x) = \sqrt{x}$ and $g(x) = \frac{1}{\sqrt{x}}$ on (a, b) and find c.

- 21. Verify Cauchy's mean value theorem for the function for $f(x) = 2x^3$ and $g(x) = x^6$ on (a, b) and find c
- 22. Verify Cauchy's mean value theorem for the function for $e^x + e^{-x}$ on [a, b] and find c.
- 23. Expansion e^x by Maclaurins theorem.
- 24. Expansion e^x by Maclaurins theorem.
- 25. Expansion $\sin x$ by Maclaurins theorem.
- 26. Expansion $\cos x$ by Maclaurins theorem.
- 27. Expansion log(1 + x) by Maclaurins theorem.
- 28. Evaluate $\lim_{x\to 0} \frac{2\sin x \sin 2x}{x \sin x}$
- 29. Evaluate $\lim_{x\to 0} \frac{\sin x}{\cos x}$
- 30. Evaluate $\lim_{x\to 0} \log x \tan x \tan x^2$
- 31. Evaluate $\lim_{x\to 0} \log \frac{\sin x}{\cot x}$.
- 32. Evaluate $\lim_{x\to 0} \frac{a^{x-1}}{b^{x-1}}$
- 33. Evaluate $\lim_{x\to 0} \log \frac{\sin x x}{x \tan x}$
- 34. Evaluate $\lim_{x\to 0} x \log x$
- 35. Evaluate $\lim_{x\to 0} \frac{\cot x}{\log \tan x}$
- 36. Find n^{th} derivatives of $e^x \log x$
- 37. If $y = x^2 \sin x$ find y_n .
- 38. If $y = x^3 e^x \sin x$ then n^{th} derivatives of y.

39. If $y = x^2 \cos x$ find y_n .

40. If $y = x^2 \tan x$ find y_n .