Yashwantrao Chavan College of Science, Karad

Department of Computer Science Question Bank,2023-2024 Subject: Mathematics(Operation Research) Class:B.Sc.CS.(Entire)-II

1) Solve the following L.P.P. using simplex method.

Max
$$Z = 2x_1 - x_2 + 2x_3$$

Subject to $2x_1 + x_2 \le 10$
 $x_1 + 2x_2 - 2x_3 \le 20$
 $x_1 + 2x_3 \le 5$

2) Solve the following L.P.P. by Big- M method.

Min Z =
$$12x_1 + 20x_2$$

Subject to $6x_1 + 8x_2 \ge 100$
 $7x_1 + 12x_2 \ge 120$

3) Solve the following problem by using VAM method.

	W_{1}	W_{2}	W_3	W_{4}	Supply
01	19	30	50	10	7
02	10	30	40	60	9
03	40	8	70	20	18
Demand	5	8	7	14	

4) Solve the following using unbalanced assignment problem.

	P	Q	R	
A	7	3	5	
В	2	7	4	
С	6	5	3	
D	3	4	7	

5) Define: (i) Slack variable (ii) Surplus variable

6) To solve transporation problem by using matrix minima method.

	D_{1}	D_2	D_3	D_4	Supply
$\overline{O_1}$	19	30	30	10	7
$\overline{O_2}$	10	30	40	60	9
0	40	Ŕ	70	20	18

7) Solve the following game by arithmetic method.

Player B [5 3 1 4]

8) To find minimum cost of transportation problem by using North- west corner method.

	W_{1}	W_{2}	W_{3}	$W_{_4}$	Supply
F_{1}	1	2	1	4	30
F_{2}	2	3	2	1	50
F_3	4	4	5	9	20
Demand	20	40	30	10	

9) Solve the following assignment problem for minimum cost by using Hungerian method.

	I	II	III	IV
Α	15	13	14	17
В	11	12	15	13
C	13	12	10	11
D	15	17	14	16

10) Solve the following L.P.P. by Simplex method.

Max Z =
$$3x_1 + 2x_2 + 5x_3$$

Subject to $x_1 + 2x_2 + x_3 \le 430$
 $3x_1 + 2x_3 \le 460$
 $x_1 + 4x_2 \le 430$

11) To find minimum cost of transportation problem by using North- west corner method.

	W_{1}	W_{2}	W_3	$W_{\overline{4}}$	Supply
F_{1}	2	16	15	13	11
F_{2}	17	18	14	23	13
F ₃	13	27	18	41	19
Demand	6	10	12	15	43

12) Solve the following problem by using VAM method.

	W_{1}	W_{2}	W_3	W_{4}	Supply
--	---------	---------	-------	---------	--------

01	11	13	17	14	250
02	16	18	14	10	300
03	21	24	13	10	400
Demand	200	225	275	250	950

13) Solve the following problem by using MODI method.

	W_{1}	W_{2}	W_{3}	$W_{\overline{4}}$	Supply
01	2	16	15	13	11
02	17	18	14	23	13
03	32	27	18	41	19
Demand	6	10	12	15	

14) Solve the following game by arithmetic method.

Player B

I II Player B [4 1 2 5]

15) Solve the following assignment problem for minimum cost by using Hungerian method.

	I	II	III	IV
A	2	10	9	7
В	15	4	14	8
C	13	14	16	11
D	4	15	13	9

16) To solve transporation problem by using matrix minima method.

	D_{1}	D_2	D_3	D_4	Supply
01	11	13	17	14	250
02	16	18	14	10	300
03	21	24	13	10	400
Demand	200	225	275	250	950

17) Obtain the initial basic feasible solution for the following transportation problem by VAM method to maximize the profit of following rates.

	D_{1}	D_2	D_3	D_4	Supply
01	15	51	42	33	23
02	30	42	26	81	44
03	90	40	66	50	33
Demand	23	31	16	30	100

18) Solve the following assignment problem for minimum cost by using Hungerian method.

	I	II	III	IV
Α	4	2	5	7
В	8	3	10	8
C	12	5	4	5
D	6	3	7	14

19) Solve the following problem by using MODI method.

	$W_{_{1}}$	W_{2}	W_3	W_{4}	Supply
01	11	13	17	14	250
02	16	18	14	10	300
03	21	24	13	10	400
Demand	200	225	275	250	950

20) Obtain the initial basic feasible solution for the following transportation problem by VAM method to maximize the profit of following rates.

	$D_{\underline{1}}$	D_2	D_3	D_4	Supply
01	30	25	40	20	100
02	29	26	35	40	250
03	31	33	37	30	150

-	0.0				
Demand	90	160	200	50	500
			200	50	1000

21) To find minimum cost of transportation problem by using North- west corner method.

	A	В	III	IV
1	6	10	15	2
2	4	6	16	5
3	12	5	8	9
Demand	1	8	7	16

22) To solve transporation problem by using matrix minima method.

	$W_{_{1}}$	W_{2}	W_{3}	W_{4}	Supply
F_{1}	2	16	15	13	11
F_{2}	17	18	14	23	13
F_3	13	27	18	41	19
Demand	6	10	12	15	43

23) Solve the following problem by using VAM method.

	W_{1}	W_{2}	W_3	W_{4}	Supply
F_{1}	2	16	15	13	11
F_2	17	18	14	23	13
F_3	13	27	18	41	19
Demand	6	10	12	15	43

24) Solve the following problem by using MODI method.

	W_{1}	W_{2}	W_{3}	W_{4}	Supply
01	19	30	50	10	7
0,	10	30	40	60	9
03	40	8	70	20	18
Demand	5	8	7	14	

25) Solve the following assignment problem for minimum cost by using Hungerian method.

-	I	II	III
A	470	580	410
В	365	920	740
С	880	550	430