Yashwantrao Chavan College of Science, Karad.

B.Sc. Part III Semister-V

Paper- X (Molecular cell biology and animal biotechnology) Question Bank

Multiple choice questions

1.	What is	the function of enzyme involved in base excision repair?
	a)	Addition of correct base
	b)	Addition of correct nucleotide
	c)	Removal of incorrect base
	d)	Removal of phosphodiester bond
2.	Why re	combinational repair system is called double strand break repair?
	a)	Both strands are broken
	b)	One strand is broken
	c)	No strand is broken
	d)	Both strand act as template
3.	In SOS	repair system cleavage of LexA and UmuD is mediated by
	a)	RecB
	b)	RecA
	c)	RecC
	d)	UvrA
4.	What is	a mode of replication in E.coli?

a) Intermediate

c) Conservative

d) Semiconservative

a) Particular site at which DNA replication starts

5. What is the origin of replication?

b) Dispersive

	b)	Site which prevents initiation
	c)	Random location on the DNA
	d)	Site at which replication terminated
6.	Which	of the following has the self-repairing mechanisms?
	a)	DNA and RNA
	b)	DNA, RNA and protein
	c)	Only DNA
	d)	DNA and proteins
7.	The oka	nzaki fragments are present onstrand
	a.)Tem	aplate b)leading c)lagging d)all the above
8.	Replica	tion occurs inphase
	a)G1	b)S c)G2 d)M.
9.	In repli	cation of DNA synthesis of new strand always occurs in the direction
	a) 5'-3	3' b)3'-5' c)both forward d) both backward.
10.	DNA p	olymeraseremoves RNA primer and replaces DNA
	a)I	b)II c)III d)IV.
11.	The ge	netic code is
	a)	Triplet b) Quadruplet c) Doublet d) Singlet
12.	18. A c	odon contains how many nucleotides?
	a)	1
	b)	2
	c)	3
	d)	4
13.	19. The	initiation codon is
	a)	AUG
	b)	UAA
	c)	UAG
	d)	UGA
14.	What is	the reaction in DNA replication catalyzed by DNA ligase?
	a)	Addition of new nucleotides to the leading strand
	b)	Addition of new nucleotide to the lagging strand

	c)	Formation of a phosphodiester bond between the 3'-OH of one Okazaki fragment
		and the 5'-phosphate of the next on the lagging strand
	d) Bas	se pairing of the template and the newly formed DNA strand
15.	Which	of the following enzymes remove supercoiling in replicating DNA ahead of the
	replica	tion fork?
	a)	DNA polymerases
	b)	Helicases
	c)	Primases
	d)	Topoisomerases
16.	DNA u	nwinding is done by
	a)	Ligase
	b)	Helicase
	c)	Topoisomerase
	d)	Hexonuclease
17.	What is	the work of the sigma factor in transcription?
	a)	Helicase action
	b)	Transcription initiation
	c)	Transcription elongation
	d)	Transcription termination
18.	f	Cactor is used for promoter recognition
	a)	Sigma 32
		Sigma 70
		Sigma 60
		Sigma 40
19.		base pairs of DNA is transcribed by RNA polymerase in one go.
	ŕ	5-6
	b)	
	c)	
• •	,	7-8
20.		mination codon is not
	a)	AUG

b) UAA
c) UAG
d) UGA
21. 21. How many t-RNAs are required to translate all 61 codons?
a) 31
b) 32
c) 30
d) 29
22is the energy rich molecule requires for initiation of translation
a)ATP b)GTP c)CTP d)AMP
23. The 70S ribosome hasbinding sites of aminoacyl RNA
a)A site b)P site c)E site d)all the above
24 Which of the following transcription termination technique has RNA dependent ATPase
activity?
a) Intercalating agents
b) Rho dependent
c) Rho independent
d) Rifampein
25. Shine-Dalgarno sequence is present in the
a) hnRNA
b) mRNA
c) tRNA
d) siRNA
26. The first amino acid incorporated at the N-terminus of polypeptide is
a) methionine
b) cysteine
c) tryptophan
d) valine.

27. The geneti	c code translated the language of						
a) Pr	a) Proteins into that of RNA						
b) A	mino acids into that of RNA						
c) R	NA into that of proteins						
d) R	NA into that of DNA						
28. Wobble h	ypothesis was first proposed by						
a) N	irenberg						
b) W	atson and Crick						
c) W	Vatson Tatson						
d) Ci	rick						
29. Synthesis	of RNA from DNA template is called						
a) Tı	ranscription b) Translation c) Transition d)none of the above						
30. Methioni	ne is specified by initiation codonto begin polypeptide						
chain sy	nthesis.						
a) A	UG b) UGA c) AAA d) AGU						
31. Simple pro	oteins are polymers of						
a) Su	igars b) Amino Acids c) Fatty acids d) Globular proteins						
32. Who disco	overed RNA polymerase?						
a) Sa	amuel B. Weiss						
b) N	irenberg						
c) W	atson and Crick						
d) D	arwin						
33. Which of	the following ensure stable binding of RNA polymerase at the promoter site?						
a) Di	NA photolyase						
b) Si	gma factor						
c) D	NA glycosylase						
d) Re	ecA						
34 Lac opere	on will be turned on when						
a)Lactose	is less than glucose						
b)Lactose	is less than medium						

	c) Glucose is enough in the medium						
	d) Lacto	ose is more than glucose					
35.	Lac op	eron is an example of					
	a) Only	positive regulation					
	b) Only	negative regulation					
	c) both	positive and negative regulation regulation					
	d) some	etimes positive sometime negative					
36.	Which	is INCORRECT statement about the transcription unit?					
	a)	It is a transcribed segment of DNA					
	b)	Eukaryotes have monocistronic transcription unit					
	c)	Prokaryotes also have a monocistronic transcription unit					
	d)	Immediate product of transcription is primary transcript					
37.	Which	of the following is TRUE for the RNA polymerase activity?					
	a)	DNA dependent DNA synthesis					
	b)	Direct repair					
	c)	DNA dependent RNA synthesis					
	d)	RNA dependent RNA synthesis					
38.	Which	enzyme used to join bits of DNA?					
	a)	DNA polymerase					
	b)	DNA ligase					
	c)	Endonuclease					
	d)	Primase					
39.	Souther	n blotting is					
	a)	Attachment of probes to DNA fragments					
	b)	Transfer of DNA fragments from electrophoretic gel to a nitrocellulose sheet					
	c)	Comparison of DNA fragments to two sources					
	d)	Transfer of DNA fragments to electrophoretic gel from cellulose membrane					
40.	7. The p	polymerase chain reaction is					
	a)	It is a DNA sequencing technique. b) It is a DNA degradation technique					
	b)	It is a DNA amplification technique d) All of the above					

41. Denatu	ration is the process of							
a)	Heating between 72°C b) Heating between 40 to 60°C							
b)	b) Heating between 90 to 98°C d) None of the above							
42. Restric	2. Restriction endonuclease producecuts.							
a)	External b) internal c) internal and external d)at one end							
43. Cloning	g vector are DNA molecules that can carry							
a)	Foreign DNA fragment b) Chromosome							
b)	Foreign protein d) Enzyme							
44. Select t	the wrong statement about plasmids?							
a)	It is extrachromosomal b) It is double stranded							
b)	Its replication depends upon host cell d) It is closed and circular DNA							
45. During	replication, Okazaki fragments elongate							
	(a) leading strand towards the replication fork							
	(b) lagging strand towards the replication fork							
	(c) leading strand away from the replication fork							
	(d) lagging strand away from the replication fork							
46. Which	position of a codon is said to wobble?							
a)	First							
b)	Second							
c)	Third							
d)	Fourth							
47 Which	h of the following enzymes is the principal replication enzyme in E. coli?							
a)	DNA polymerase I							
b)	DNA polymerase II							
c)	DNA polymerase III							
d)	None of the mentioned							
48. Individ	ual amino acid during protein synthesis specified bycodons.							
a)	3 b) 20 c) 64 d) 61							
49. Transla	ation is the							
a)	Synthesis of protein from a mRNA b) Synthesis of DNA from a mRNA							
b)	Synthesis of RNA from a mRNA d) Synthesis of protein from a DNA							

50.	OU. The process of formation of RNA is known as							
	a)	Replication						
	b)	DNA repair						
	c)	Translation						
	d)	Transcription						
51.	The enz	zyme required for transcription is						
	a)	Restriction enzyme b) DNA polymerase						
	c)	RNA polymerase d)RNAase						
52.	·	is a process in which RNA is synthesized from DNA template.						
	a)	Transcription b) Translation c) Transition d)Transformation						
53.	Transla	tion is the						
	a) Synthesis of DNA from a mRNA template							
	b) Synthesis of protein from a mRNA template							
	c) Synthesis of RNA from a mRNA template							
	d) Synt	hesis of RNA from a DNA template						

Long answer questions

CO TI

1. What is lac operon? Explain it in detail with all its components.

CC 4 CDNIA 1

- 2. What is DNA repair? Explain the DNA mismatch repair.
- 3. Explain in detail construction of cDNA libraries.
- 4. Write an account on transcription process in eukaryotes.
- 5. What is DNA transformation? Describe the methods of DNA transformation.
- 6. Describe Western blotting techniques? Add a note on their significance.
- 7. What is polymerase chain reaction? Explain in detail.
- 8. What is DNA replication? Explain the mechanism of semiconservative mode.
- 9. What is DNA damage? Describe types of DNA damage.
- 10. What is DNA sequencing? Explain in detail Sanger's method.
- 11. What is DNA Fingerprinting? Write its principle, procedure and application.
- 12. Relate protein synthesis and its two major phases to the central dogma of molecular biology.
- 13. Define restriction enzymes and give its classification in detail?

- 14. What is DNA repair? Describe base excision & nucleotide excision repair mechanisms.
- 15. What is genetic code? Explain the properties of Genetic code.

Short answer questions

- ➤ Nomenclature and classification of restriction enzymes
- ➤ Codon Assignment
- ➤ Post transcriptional modification in RNA.
- > Phagemids
- ➤ Nothern Blotting.
- > Southern blotting
- ➤ Wobble Hypothesis
- > DNA Microarray
- ➤ Plasmid as a cloning vector
- ➤ Genomic libraries
- ➤ Genetic code is non-overlapping and non-ambiguos.
- > Transamination.
- ➤ Calcium Chloride method of DNA Transformation
- ➤ Base pair excision repair mechanism
- > RNA polymerase in prokaryotes
- ➤ Photoreactivation repair mechanism
- > Lac operon
- > cDNA libraries
- ➤ Application of Polymerase chain reaction
- ➤ pBR322
- ➤ Electroporation method of transformation techniques
- > Lambda bacteriophage cloning vector
- > Causes of DNA damage
- ➤ Nucleotide excision repair
- > Southern blotting
- > Okazaki fragments
- Cosmid as a cloning vector

Seat	
No.	

Total No. of Pages: 2

B.Sc. (Part - III) (Semester - V) Examination, November - 2018 ZOOLOGY

Molecular Biology, Biotechnology & Biotechniques (Paper - XI)

				` •	Code: 6585	0	
-				lnesday, 14 - 11 - 20 o 2.00 p.m.	18		Total Marks: 40
Instructions :			 All questions are compulsory. Draw neat and labelled diagrams wherever necessary. Figures to the right indicate full marks. 				
Q1) S	Sele	ct co	rrect	answer from the fo	ollowing and	rewi	rite the sentences. [8]
-	1)	The		ess of formation of	_		ds from old DNA strands is
		i)	Tran	nslation		ii)	Replication
		iii)	Trai	nsformation		iv)	Transcription
b)	The	initi	ation codon AUG	in prokaryot	es co	odes for
		i)	Vali	ne		ii)	Formyl methionine
	C	iii)	Phe	nyl alanine		iv)	Tyrosine
c) Translation is the							
i) S			Syn	thesis of pretein fro			
		ii)	Syn	thesis of DNA from	n a mRNA		
		iii)	Syn	thesis of RNA from	n a mRNA		
		iv)	Syn	thesis of protein fr	om a DNA.		
d	l)	The	enzy	me required for tra	anscription i	s	
		i)	Res	triction enzyme		ii)	DNA polymerase
		iii)	RN	A polymerase		iv)	RNAase
e) The technique us			techr	nique used for invitr	o amplificati	on of	f DNA fragments of specitic
sizes is technique.							
i) ii)		i)	ELI	SA			0,
		ii)	Chr	omatography			16
		iii)	Elec	ctrophorasis			
		iv)	Poly	ymerase chain reac	tion (PCR)		1
							$\mathbf{D} \mathbf{T} \mathbf{O}$

	f) Southern blotting is the technique used for			d for _	blot.	
		i)	Protein	ii)	DNA	
		iii)	RNA	iv)	Lipid	
	g)	For	cloning to occur, bacteria's plasm	ids mu	ist be cut by	
		i)	restriction enzymes	ii)	polymerase enzymes	
		iii)	helicase enzymes	iv)	gyrase enzymes	
	h)		is the termination codon.			
		i)	AUG	ii)	GUG	
		iii)	UCC	iv)	UAG	
Q2)	Atte	-	any two of the following:		[16]	
	a)	What is polymerase chain reaction? De polymercise chain reaction (PCR).			scribe steps involved in	
	b)		at is DNA replication? Explain mecheplication.	nanism	of semiconservative mode	
	c) Describe operon hypothesis, regulating lactose metabolism pathway prokayotes.					
Q3)	Atte	mpt a	any four of the following:		[16]	
	a)	RNA	A polymerase in prokaryotes.		9	
	b)	Initi	ation and termination codons.			
	c)	Sou	thern blotting.			
	d)	Sten	n cells and their applications.			
	e)	Gel	Electrophorasis.			
	f)	DNA	A fingerprinting			

5UK-116/6