Question Bank For Mar 2022 (Summer) Examination

Subject Code :_81693	Subject Name : Statistics				
	Paper XIV				
(Statis	ical Inference II)				
Q. 1. Choose the most correct alternation	ative (1 mark each)				
 Power curve is a curve obtained by plotting a) probability of Typelerror probability of Typellerror Probability of rejecting the null d) Probability of accepting the null 	hypothesis at $ heta_1$				
null hypothesis against simple alternativ	7.2				
a) UMP test of size αc) UMP test of size (1-α)	b) MP test of size αd) Both a and b				
3. If Λ denotes the likelihood ratio test statistic, then under certain regularity conditions which of the following is the asymptotic distribution of -2logΛ?					
a) Chi square distributionc) Gamma distribution	b) Normal distributiond) t-distribution				
A. The existent matter of a libertity and making	A substitution in the same				
4. The critical region of a likelihood ratio to a) Left tailed	b) Right tailed				
c) Two tailed	d) either (b) or (c)				
, , , ,	a false statement? es the underlying distribution completely. rejecting Null Hypothesis when it is true.				
a)Statement I and II	b) Statement II and III				
c) Statement III	d) Statements I and III				
6. The LR-test for testing H_0 : $\mu = \mu_0$ against population leads to	st H_1 : $\mu \neq \mu_0$ based on sample from normal				
a) One tailed t- test	b) Two tailed t-test				
c) Two tailed F- test	d) One tailed F- test.				
7. Which one of the following non- parame sample?	tric tests is applicable for a randomness of				
a) Median test b) Sign test	c) K-S test d) Run test.				
8. The most preferred confidence interval for a) with shortest width and largest conb) with largest width and largest conc) based on sufficient statistics	nfidence coefficient				

d) both (a) and (b)

9. In SPRT, decision about the null hypothesis is taken after					
a) fixed number of observation	· · · · · · · · · · · · · · · · · · ·	vation			
c) at least three observations	d) only one observation				
10. If $\alpha = P(\text{Type I error})$ and $\beta = P(\text{Type II error})$, then in SPRT lower and upper cut off points (A and B) are given by					
a) $B = \frac{\alpha}{1-\beta}$ and $A = \frac{1-\alpha}{\beta}$	b) $B = \frac{\alpha}{1-\beta}$ and $A = \frac{\beta}{1-\beta}$	<u> </u>			
1 P P	,				
c) $B = \frac{\beta}{1-\alpha}$ and $A = \frac{1-\alpha}{\beta}$	d) $B = \frac{\beta}{1-\alpha}$ and $A = \frac{1-\alpha}{\alpha}$	<u>-</u> .			
11 In SDDT of strength (o. R)= (0.0	(0.02) the stanning bounds (A_{-})	R) ora givan by			
11. In SPRT of strength $(\alpha, \beta) = (0.0$ $a) \left(\frac{97}{3}, \frac{2}{98}\right) \qquad b) \left(\frac{97}{2}, \frac{1}{98}\right)$	$\frac{3}{98}$ c) $\left(\frac{98}{3}, \frac{2}{98}\right)$				
12. Which of the following statements: I) Sample size (n) is fixed	nts about SPRT are true?				
II) $P(Type\ I\ error) = \alpha$ and $P(Type\ I)$	- ·				
III) P(Type II error)= β is minim	ized for fixed $α$.				
a) Only statement (I) is true.	b) Only statement (II) is	true.			
c) Only statement (III) is true	· · ·				
13. The likelihood ratio test statistic for testing H_0 : $\sigma^2 = \sigma_0^2$ against H_1 : $\sigma^2 \neq \sigma_0^2$ based on a sample of size n from normal population N (μ, σ^2) leads to					
a) χ_{n-1}^2 distribution.	b) χ_{n-2}^2 distribution.				
c) t_{n-1} distribution.	d) t_{2n-1} distribution.				
14. Which of the following is most a	appropriate test for testing simple	H ₀ against simple H ₁ ?			
,	b) MP level $(1-\alpha)$ test				
c) UMP level $(1-\alpha)$ test	d) Likelihood Ratio level	$1(1-\alpha)$ test			
15. If a hypothesis is rejected at the	level of significance 0.025, then i	t			
a) must be rejected at any level b) must be rejected at the 0.01 level					
c) must be rejected at the 0.0	5 level d) must not be rej	ected at any other level			
16. A sample of one observation, say X is taken from the distribution $f(x) = \theta e^{-x\theta}$, $x>0$ for testing H_0 : $\theta = 1$ against H_1 : $\theta=2$. The hypothesis H_0 is rejected if $X \le 0.5$, then the power					
of a test is a)1- $e^{0.5}$ b) 1- $e^{0.5}$	-1 -2/1-	J) _			
,	,	d) e			
17. If random variable X has $N(\mu, \sigma^2)$ -distribution then which of the following is a simple null hypothesis?					
a) $ \mu =0$ b) $\mu=1$	$c) \sigma^2 = 16$	d) μ =10, σ^2 =16			

18. A sample of size 144 from $s^2=36$ then 95% confidence.		=	nd sample variance	
a) (9.02, 10.98)		c) (10.02, 10.98)	d) (9.20, 10.98)	
 19. Which of the following statement is false? a) Probability of rejecting H₀ when H₁ is true is known as type II error. b) Neyman Pearson test leads to a most powerful test. c) Probability of rejecting H₀ when H₀ is true is known as type I error. d) All the above are true 				
20. The critical region of tw a) Two tailed	-	. c) Left tailed d)Ei	ther (a) or (b) or (c)	
21. For exponential distrib simple?	-			
 a)H: θ < 4 b) H: θ= 2 c) H: = θ > 4 d) None of these 22. Which of the following statement/s is/are true? (I) NP-Lemma provides MP-test. (II)Non-parametric tests are often less powerful. (III)Size of test is desired to be less than or equal to power of the test. a) Statement I b) Statement II c) Statement I and III d) All of them 				
23. Which of the following a) Run test	non-parametric test is a b) K-S test	applicable for paired s c) Sign test	samples? d) Median test	
24. If we are interested in determining an upper bound for the average nicotine content of certain brand of cigarettes then this is a problem of a) Point estimation b) Interval estimation c)Testing of hypothesis d) None of them				
25. The LR test for testing H_0 : $\sigma = \sigma_0$ against H_1 : $\sigma \neq \sigma_0$ based on random sample of size n taken from $N(\mu, \sigma^2)$ where μ , is known leads to: a) χ^2 -test with n d. f. b) χ^2 -test with n-1 d. f. c) F-test d) Normal test				
26. Which of the following two attributes?a) Median test b) Ru	_		est of independence of -S test	
 27. Given that P(4.4≤ μ≤15.7)= 0.90, Which of the following is correct? a) The width of confidence interval is 11.3. b) 4.4 and 15.7 are 90% confidence limits of μ. c) Probability that μ does not lie in the interval (4.4, 15.7) is 0.1 d) All (a) to (c) are true 				

28. If $\beta(\theta)$ is the probability of type II error of a test for testing H_0 : $\theta = \theta_0$ against H_1 and $\theta < \theta_0$ then $1 - \beta(\theta)$ gives the					
a) Power function	b) Power of the test at θ				
c) Both (a) and (b)	d) Neither (a) nor (b)				
29 Among the following statements, f	alse statement/s is/are				
I) SPRT is a sequential test II) For large samples median test leads to chi-square test III) Median test is used for paired data only. a) II and III b) I and II c) I, II, III d) III					
30. K-S test for single sample is referr	red to as				
a) Test of randomness	b) A test of goodness of fit				
c) Both (a) and (b)	d) Neither (a) nor (b)				
31. Following is the arrangement of male (M) and female (F) in a queue MMFMFFMFFMMMFFFM					
Total numbers of runs in this queu	e are				
a) 09 b) 01	e) 20 d) 11				
32. Some statements are given below: I) In SPRT, the size of sample is random II) Randomness of sample can be tested by using run test, III) UMP tests always exist. Among the above false statement is					
a) III b) II	e) I d) IV				
 33. If X₁, X₂,, X_n is a random sample of size n from exponential distribution with parameter θ then interval estimate of θ is obtained by using a) Normal distribution b) t-distribution c) Chi-square distribution d) F-distribution 					
 34. T(X, θ) which is a function of random sample X = (X₁,X₂,,Xn) and parameter θ. The distribution of T(X, θ) is independent of θ and is used to find C. I. of θ is called as a) statistic b) likelihood function c) pivot d) sample space 					
 35. The power of a statistical test for testing null hypothesis H₀ against alternative hypothesis H₁ is the probability of a) Reject H₀ when it is true b) Reject H₁ when it is true c) Reject H₁ when it is false d) Reject H₀ when it is false 					
36. Which one of the following tests will be used only for two independent samples? a) Mann Whitney Test b) K-S – Test					
c) Sign – Test	d) t – Test				

a) UMP – test	b) MP – test	c) LR – test	d) None of them		
38. Which of the followin	g Non-parametric test	utilizes the empirical	distribution function?		
a) Median test		b) Wilcoxon's si	gned rank test		
c) Wald-Wolfwitz	run test	d) Kolmogorov -	Smirnov test		
39. If $X_1, X_2,, X_n$ is a random sample of size n from $N(\mu, \sigma_0^2)$, where σ_0 is known but μ is unknown then, with usual notations, what is(are) pivotal quantity(quantities) to find C. I. for μ ?					
a) $\frac{\sqrt{n}(\overline{X}-\mu)}{\sigma_0}$	b)	$\frac{\sqrt{n}}{s}\overline{X}$			
00		3			
c) Both a) and b)	a)	None of the above			
 40. If X₁, X₂,, X_n is a random sample of size n from N(μ, σ²), where μ is known, then what is(are) pivotal quantity(quantities) to find C. I. for σ²? a) ∑_{i=1}ⁿ ((X_i-X̄)/σ)² b) ∑_{i=1}ⁿ (X_i - μ₀)² c) Both a) and b) are true d) None of the above is true 					

37. If a statistical test T for testing simple null hypothesis against simple alternative

is at least as powerful as any other test then it is known as....

41. A random sample of size n individuals is selected from a population to study some population characteristic. If X individuals are possessing this characteristic in this sample of size n, then with usual notations, what is $(1-\alpha)$ level confidence interval for population proportion P of this characteristic for large n?

a)
$$\left(\frac{X}{n} - \frac{Z_{\alpha/2}}{\sqrt{n}} \sqrt{\frac{X}{n} \left(1 - \frac{X}{n}\right)}, \frac{X}{n} + \frac{Z_{\alpha/2}}{\sqrt{n}} \sqrt{\frac{X}{n} \left(1 - \frac{X}{n}\right)}\right)$$

b)
$$\left(\frac{X}{n} - \frac{t_{(n-1, \alpha/2)}}{\sqrt{n}} \sqrt{\frac{X}{n} \left(1 - \frac{X}{n}\right)}, \frac{X}{n} + \frac{t_{(n-1, \alpha/2)}}{\sqrt{n}} \sqrt{\frac{X}{n} \left(1 - \frac{X}{n}\right)}\right)$$

- c) Both a) and b).
- d) None of the above.

42. If (L(X), U(X)), where L(X) and U(X) are real valued functions of X, $L(X) < U(X) < \infty$, is confidence interval for θ based on random sample X then what is length of this confidence interval?

b)
$$(U(X) + L(X))/2$$
 c) $U(X) - L(X)$

c)
$$U(X) - L(X)$$

d)
$$(U(X) - L(X))/2$$

43. If $X_1, X_2, ..., X_n$ is a random sample of size n from $N(\mu, \sigma_0^2)$, where μ is unknown and σ_0 is known. Then with usual notations, what is (are) $(1-\alpha)$ level confidence interval(s) for

a)
$$\left(\overline{X} - \frac{\sigma_0}{\sqrt{n}} Z_{\alpha/2}, \overline{X} + \frac{\sigma_0}{\sqrt{n}} Z_{\alpha/2}\right)$$

a)
$$\left(\overline{X} - \frac{\sigma_0}{\sqrt{n}} Z_{\alpha/2}, \overline{X} + \frac{\sigma_0}{\sqrt{n}} Z_{\alpha/2}\right)$$
 b) $\left(\overline{X} - \frac{S}{\sqrt{n}} t_{(n-1,\frac{\alpha}{2})}, \overline{X} + \frac{S}{\sqrt{n}} t_{(n-1,\frac{\alpha}{2})}\right)$

c) Both a) and b) are true.

d) None of the above is true

Q.2. Long answer questions

(8 marks each)

- 1. Define power of test. State and prove Neyman-Pearson Lemma
- 2. Define Most Powerful Test, Uniformly Most Powerful Test
 - If $X \ge 2$ is the critical region for testing $H_0: \theta=2$ against $H_1: \theta=1$ based on the sample from exponential distribution with parameter θ , then obtain α , β and power of the test.
- 3. Obtain $100(1-\alpha)\%$ confidence interval for difference between two population means based on two independent large samples of size n_1 and n_2 .
- 4. Define UMP test of size α . Obtain UMP test of size α for testing $H_0: \theta = \theta_0$ against $H_1: \theta > \theta_0$ when a sample of size n is drawn from exponential population with parameter θ .
- 5. Define MP and UMP test. Assuming X has $N(\mu, 4)$ distribution, obtain UMP test of level 0.05 to test $H_0: \mu=7$ against $H_1: \mu<7$.
- 6. Use N-P Lemma to obtain MP critical region to test H_0 : $\mu = \mu_0$ against H_1 : $\mu = \mu_1$ ($\mu_1 > \mu_0$) based on sample of size n from $N(\mu, \sigma^2)$ when σ^2 is known. Obtain power of the test.
- 7. Derive SPRT of strength (α, β) to test $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$ $(\theta_1 > \theta_0)$ based on sequence of observations from $B(n, \theta)$ population.
- 8. Define SPRT. Derive SPRT of strength (0.05, 0.02) to test H_0 : θ =2 against H_1 : θ =3 based on sequence of i. i. d. observations from exponential population with mean θ .
- 9. Describe the procedure of SPRT. Derive SPRT of strength (α, β) to test $H_0: \mu = \mu_0$ against $H_1: \mu = \mu_1 (\mu_1 > \mu_0)$ based on sequence of observations from $N(\mu, 1)$ distribution.
- 10. Explain the procedure of likelihood ratio test. Derive LRT for testing H_0 : $\sigma^2 = \sigma_0^2 Vs$ H_1 : $\sigma^2 \neq \sigma_0^2$ based on sample of size n from $N(\mu, \sigma^2)$ population.
- 11. Derive LR test for testing H_0 : $\mu=\mu_0$ against H_1 : $\mu\neq\mu_0$ based on sample of size n drawn from $N(\mu,\sigma^2)$ distribution considering cases i) σ^2 is unknown and ii) σ^2 is known.
- 12. Obtain $100(1-\alpha)\%$ confidence interval for difference between two population proportions based on two independent large samples.
- 13. Obtain $100(1-\alpha)\%$ confidence interval for difference between means based on two independent small samples of size n_1 and n_2 from $N(\mu_1, \sigma^2)$ and $N(\mu_2, \sigma^2)$ populations.
- 14. Describe the procedure of Run test for randomness and two samples K-S test.
- 15. Describe the procedure of Median test and Mann-Whitney U test.
- 16. Explain Run test and Mann-Whitney U test for two samples
- 17. Explain procedure for sign test and signed rank test.

Q.3. Short answer questions

(4 marks each)

- 1. Describe procedure to obtain interval estimator of population median using order statistics
- 2. If X has p. d. f. $f(x) = \frac{2x}{\theta^2}$; $0 \le x < \theta$. Obtain Type I error and power of test for testing $H_0: \theta=4$ against $H_1: \theta=5$ if C. R. $\{x/x>4\}$
- 3. Obtain UMP test for testing H_0 : p=1/2 against H_1 : p>1/2 based on sample of size n from B(1, p) considering level of significance 0.1
- 4. Obtain $100(1-\alpha)\%$ confidence interval for population median based on large sample.
- 5. Obtain 90% confidence interval for population proportion based on large sample of size n
- 6. Define the terms; size of test, power function, pivotal quantity and critical region
- 7. Obtain UMP test for testing $H_0: \theta=2$ against $H_1: \theta=1$ based on sample of size n from $B(15, \theta)$
- 8. Obtain 95% C. I. for mean μ of $N(\mu, \sigma^2)$ population based on sample of size 100 when σ^2 is unknown.
- 9. Define the terms; confidence coefficient, MP critical region, UMP test and p-value.
- 10. Define pivotal quantity and power of the test. Differentiate between parametric and non-parametric tests
- 11. Define; Simple and composite hypothesis, Critical value, Confidence interval and Level of significance
- 12. Suppose 'X' has Bernoulli distribution with probability of success θ . It is proposed to test $H_0: \theta=0.5$ against $H_1: \theta=0.3$ based on sample of size 5. The C. R. is $\Sigma Xi > 3$. Find probabilities of Type I and Type II errors. Also find power of test.
- 13. Obtain $100(1-\alpha)\%$ confidence interval for difference between means based on samples from two independent normal populations
- 14. Obtain likelihood ratio test for testing H_0 : $\mu = \mu_0$ against H_1 : $\mu \neq \mu_0$ when a sample is drawn from $N(\mu, 625)$ population.
- 15. Obtain UMP test for testing H_0 : $\lambda=2$ against H_1 : $\lambda>3$ based on sample of size n from $P(\lambda)$ population. Use level $\alpha=0.02$.
- 16. Derive SPRT of strength (0.05, 0.02) for testing H_0 : λ =2 against H_1 : λ =3 when observations are drawn sequentially from $P(\lambda)$ population.
- 17. Obtain SPRT of strength (α, β) for testing $H_0 : \lambda = \lambda_0$ against $H_1 : \lambda = \lambda_1$ when observations are drawn from $P(\lambda)$ population.
- 18. Obtain SPRT of strength (α, β) for testing $H_0 : P = P_0$ against $H_1 : P = P_1$ when observations are drawn from B(n, P) population.
- 19. Derive SPRT of strength (α, β) for testing $H_0: \theta=2.5$ against $H_1: \theta=3.5$ in case of observations drawn from exponential distribution with parameter θ .

- 20. Derive MP test for testing H_0 : $\lambda=2$ against H_1 : $\lambda=1$ when sample of n observations is drawn from $P(\lambda)$ distribution.
- 21. Derive SPRT of strength (α, β) for testing $H_0: \theta=2$ against $H_1: \theta=3$ in case of observations drawn from exponential distribution with mean θ .
- 22. Write procedure of sign test for single sample.
- 23. Describe the procedure of Kolmogrov -Smirnov test for two independent samples.
- 24. Describe the procedure of one sample Wilcoxon's signed rank test.
- 25. Explain the procedure of single sample Kolmogrov -Smirnov test.
- 26. Explain procedure for Mann-whitney U test.
- 27. Explain the test for randomness.
- 28. Explain non-parametric test procedure for testing goodness of fit for one sample.
- 29. Explain median test for two independent samples
- 30. Explain advantages of non-parametric methods over parametric methods.
- 31. Explain likelihood ratio test and sequential probability ratio test procedures.
- 32. Derive UMP test of size α for testing $H_0: \theta = \theta_0$ against $H_1: \theta < \theta_0$ based on r. s. of size n from exponential distribution with parameter θ .
- 33. Obtain $100(1-\alpha)\%$ confidence interval for mean of exponential distribution with mean θ .
- 34. Explain in brief general procedure of determining confidence interval.
- 35. Explain in brief concept of p-value.
- 36. Describe likelihood ratio test and state its properties.